0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Eco-Friendly Extraction: Innovations, Principles, and Comparison with Traditional Methods

, , &
Received 24 Nov 2023, Accepted 11 Jul 2024, Published online: 23 Jul 2024

References

  • Oreopoulou, V.; Tzia, C. Utilization of Plant By-Products for the Recovery of Proteins, Dietary Fibers, Antioxidants, and Colorants. In Utilization of By-Products and Treatment of Waste in the Food Industry, Oreopoulou, V. Russ, W., Eds.; Springer US, 2007; pp. 209–232. DOI: 10.1007/978-0-387-35766-9_11.
  • Elshafie, H. S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. Biomed Res. Int. 2017, 2017, 1–14. DOI: 10.1155/2017/9268468.
  • Stratakos, A. C.; Koidis, A. Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier, 2016; pp. 31–38. DOI: 10.1016/B978-0-12-416641-7.00004-3.
  • Naviglio, D.; Scarano, P.; Ciaravolo, M.; Gallo, M. Rapid Solid-Liquid Dynamic Extraction (RSLDE): A Powerful and Greener Alternative to the Latest Solid-Liquid Extraction Techniques. Foods. 2019, 8(7), 245. DOI: 10.3390/foods8070245.
  • Armenta, S.; Garrigues, S.; Esteve-Turrillas, F. A.; De La Guardia, M. Green Extraction Techniques in Green Analytical Chemistry. TrAC. Trends. Anal. Chem. 2019, 116, 248–253. DOI: 10.1016/j.trac.2019.03.016.
  • Grumezescu, A. M.; Holban, A. M. Ingredients Extraction by Physicochemical Methods in Food. In Handbook of Food Bioengineering, Grumezescu, A.M., Ed.; Academic Press, an imprint of Elsevier: London ; San Diego, California, 2017; pp. 1–640.
  • Usman, I.; Hussain, M.; Imran, A.; Afzaal, M.; Saeed, F.; Javed, M.; Afzal, A.; Ashfaq, I.; Al Jbawi, E.; Saewan, S. Traditional and Innovative Approaches for the Extraction of Bioactive Compounds. Int. J. Food. Prop. 2022, 25(1), 1215–1233. DOI: 10.1080/10942912.2022.2074030.
  • Belwal, T.; Chemat, F.; Venskutonis, P. R.; Cravotto, G.; Jaiswal, D. K.; Bhatt, I. D.; Devkota, H. P.; Luo, Z. Recent Advances in Scaling-Up of Non-Conventional Extraction Techniques: Learning from Successes and Failures. TrAC. Trends. Anal. Chem. 2020, 127, 115895. DOI: 10.1016/j.trac.2020.115895.
  • Argun, M. E.; Argun, M. Ş.; Arslan, F. N.; Nas, B.; Ates, H.; Tongur, S.; Cakmakcı, O. Recovery of Valuable Compounds from Orange Processing Wastes Using Supercritical Carbon Dioxide Extraction. J. Clean. Prod. 2022, 375, 134169. DOI: 10.1016/j.jclepro.2022.134169.
  • Patience, N. A.; Schieppati, D.; Boffito, D. C. Continuous and Pulsed Ultrasound Pectin Extraction from Navel Orange Peels. Ultrason. Sonochem. 2021, 73, 105480. DOI: 10.1016/j.ultsonch.2021.105480.
  • Al-Dhabi, N. A.; Ponmurugan, K.; Maran Jeganathan, P. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrason. Sonochem. 2017, 34, 206–213. DOI: 10.1016/j.ultsonch.2016.05.005.
  • Petigny, L.; Périno-Issartier, S.; Wajsman, J.; Chemat, F. Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus Boldus Mol.). Int. J. Mol. Sci. 2013, 14(3), 5750–5764. DOI: 10.3390/ijms14035750.
  • Navarro Del Hierro, J.; Herrera, T.; García-Risco, M. R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-Assisted Extraction and Bioaccessibility of Saponins from Edible Seeds: Quinoa, Lentil, Fenugreek, Soybean and Lupin. Food. Res. Int. 2018, 109, 440–447. DOI: 10.1016/j.foodres.2018.04.058.
  • Feng, T.; Zhang, M.; Sun, Q.; Mujumdar, A. S.; Yu, D. Extraction of Functional Extracts from Berries and Their High Quality Processing: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2023, 63(24), 7108–7125. DOI: 10.1080/10408398.2022.2040418.
  • Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food. Bioprocess. Technol. 2012, 5(2), 409–424. DOI: 10.1007/s11947-011-0573-z.
  • Putra, N. R.; Yustisia, Y.; Heryanto, R. B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D. N.; Yunus, M. A. C.; Irianto, I.; Qomariyah, L.; Rohman, G. A. N. Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review. South. Afr. J. Chem. Eng. 2023, 46, 88–98. DOI: 10.1016/j.sajce.2023.08.002.
  • Socas-Rodríguez, B.; Torres-Cornejo, M. V.; Álvarez-Rivera, G.; Mendiola, J. A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11(11), 4897. DOI: 10.3390/app11114897.
  • Das, D.; Shafi, S. Bioactivity-Guided Fractionation and Identification of Bioactive Molecules: A Basic Method in Drug Discovery. In Drugs and a Methodological Compendium, Rajput, V. S. Runthala, A., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 41–78. DOI: 10.1007/978-981-19-7952-1_3.
  • Bitwell, C.; Indra, S. S.; Luke, C.; Kakoma, M. K. A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants. Sci. Afr. 2023, 19, e01585. DOI: 10.1016/j.sciaf.2023.e01585.
  • Senapati, M. R.; Behera, P. C. Novel Extraction Conditions for Phytochemicals. In Recent Frontiers of Phytochemicals; Elsevier, 2023; pp. 27–61. DOI: 10.1016/B978-0-443-19143-5.00019-0.
  • Perera, P. R. D.; Ekanayake, S.; Ranaweera, K. K. D. S. Antidiabetic Compounds in Syzygium Cumini Decoction and Ready to Serve Herbal Drink. Evid. Complement. Alternat. Med 2017, 2017, 1–5. DOI: 10.1155/2017/1083589.
  • Chuo, S. C.; Nasir, H. M.; Mohd-Setapar, S. H.; Mohamed, S. F.; Ahmad, A.; Wani, W. A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52(4), 667–696. DOI: 10.1080/10408347.2020.1820851.
  • Li, G.; Chen, D. Comparison of Different Extraction Methods of Active Ingredients of Chinese Medicine and Natural Products. J. Sep. Sci. 2024, 47(1), 2300712. DOI: 10.1002/jssc.202300712.
  • Lourenço-Lopes, C.; Silva, A.; Garcia-Oliveira, P.; Soria-Lopez, A.; Echave, J.; Grosso, C.; Cassani, L.; Barroso, M. F.; Simal-Gandara, J.; Fraga-Corral, M., et al. Kinetic Extraction of Fucoxanthin from Undaria Pinnatifida Using Ethanol as a Solvent. Mar. Drugs. 2023, 21(7), 414. DOI: 10.3390/md21070414.
  • Lakshmanan, M. Plant Extraction Methods. In Introduction to Basics of Pharmacology and Toxicology, Lakshmanan, M., Shewade, D. G. Raj, G. M., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 773–783. DOI: 10.1007/978-981-19-5343-9_54.
  • Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules. 2009, 14(6), 2167–2180. DOI: 10.3390/molecules14062167.
  • Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A. 2021, 1635, 461770. DOI: 10.1016/j.chroma.2020.461770.
  • Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New Perspective in Extraction of Plant Biologically Active Compounds by Green Solvents. Food. Bioprod. Process. 2018, 109, 52–73. DOI: 10.1016/j.fbp.2018.03.001.
  • Wang, T.; Wang, Q.; Guo, Q.; Li, P.; Yang, H. A Hydrophobic Deep Eutectic Solvents-Based Integrated Method for Efficient and Green Extraction and Recovery of Natural Products from Rosmarinus Officinalis Leaves, Ginkgo Biloba Leaves and Salvia Miltiorrhiza Roots. Food.Chem. 2021, 363, 130282. DOI: 10.1016/j.foodchem.2021.130282.
  • Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M. H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods. 2019, 8(11), 523. DOI: 10.3390/foods8110523.
  • Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A. S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. TrAC. Trends. Anal. Chem. 2019, 118, 248–263. DOI: 10.1016/j.trac.2019.05.037.
  • Aswathi, V. P.; Meera, S.; Maria, C. G. A.; Nidhin, M. Green Synthesis of Nanoparticles from Biodegradable Waste Extracts and Their Applications: A Critical Review. Nanotechnol. Environ. Eng. 2023, 8(2), 377–397. DOI: 10.1007/s41204-022-00276-8.
  • Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S. P.; Tiwari, B. K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2020, 60(11), 1826–1841. DOI: 10.1080/10408398.2019.1602823.
  • Janicka, P.; Płotka-Wasylka, J.; Jatkowska, N.; Chabowska, A.; Fares, M. Y.; Andruch, V.; Kaykhaii, M.; Gębicki, J. Trends in the New Generation of Green Solvents in Extraction Processes. Curr. Opin. Green Sustain. Chem. 2022, 37, 100670. DOI: 10.1016/j.cogsc.2022.100670.
  • Kankala, R. K.; Xu, P.-Y.; Chen, B.-Q.; Wang, S.-B.; Chen, A.-Z. Supercritical Fluid (SCF)-Assisted Fabrication of Carrier-Free Drugs: An Eco-Friendly Welcome to Active Pharmaceutical Ingredients (APIs). Adv. Drug. Deliv. Rev. 2021, 176, 113846. DOI: 10.1016/j.addr.2021.113846.
  • Banuti, D. T.; Raju, M.; Ihme, M. Between Supercritical Liquids and Gases – Reconciling Dynamic and Thermodynamic State Transitions. J. Supercrit. Fluids. 2020, 165, 104895. DOI: 10.1016/j.supflu.2020.104895.
  • Ražić, S.; Arsenijević, J.; Đogo Mračević, S.; Mušović, J.; Trtić-Petrović, T. Greener Chemistry in Analytical Sciences: From Green Solvents to Applications in Complex Matrices. Current Challenges and Future Perspectives: A Critical Review. The Analyst. 2023, 148(14), 3130–3152. DOI: 10.1039/D3AN00498H.
  • Rapinel, V.; Santerre, C.; Hanaei, F.; Belay, J.; Vallet, N.; Rakotomanomana, N.; Vallageas, A.; Chemat, F. Potentialities of Using Liquefied Gases as Alternative Solvents to Substitute Hexane for the Extraction of Aromas from Fresh and Dry Natural Products. Comptes. Rendus. Chim. 2018, 21(6), 590–605. DOI: 10.1016/j.crci.2018.04.006.
  • Da Silva, C. M.; Zanqui, A. B.; Gohara, A. K.; De Souza, A. H. P.; Cardozo-Filho, L.; Visentainer, J. V.; Rovigatti Chiavelli, L. U.; Bittencourt, P. R. S.; Da Silva, E. A.; Matsushita, M. Compressed N-Propane Extraction of Lipids and Bioactive Compounds from Perilla (Perilla Frutescens). J. Supercrit. Fluids 2015, 102, 1–8. DOI: 10.1016/j.supflu.2015.03.016.
  • Corso, M. P.; Fagundes-Klen, M. R.; Silva, E. A.; Cardozo Filho, L.; Santos, J. N.; Freitas, L. S.; Dariva, C. Extraction of Sesame Seed (Sesamun Indicum L.) Oil Using Compressed Propane and Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2010, 52(1), 56–61. DOI: 10.1016/j.supflu.2009.11.012.
  • Calvo-Flores, F. G.; Monteagudo-Arrebola, M. J.; Dobado, J. A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. 2018, 376(3), 18. DOI: 10.1007/s41061-018-0191-6.
  • Cañadas, R.; González-Miquel, M.; González, E. J.; Núñez De Prado, A.; Díaz, I.; Rodríguez, M. Sustainable Recovery of High Added-Value Vanilla Compounds from Wastewater Using Green Solvents. ACS. Sustain. Chem. Eng 2021, 9(13), 4850–4862. DOI: 10.1021/acssuschemeng.1c00168.
  • Chemat, F.; Abert Vian, M.; Ravi, H. K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules. 2019, 24(16), 3007. DOI: 10.3390/molecules24163007.
  • Breil, C.; Meullemiestre, A.; Vian, M.; Chemat, F. Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel. Molecules. 2016, 21(2), 196. DOI: 10.3390/molecules21020196.
  • Chaabani, E.; Abert Vian, M.; Dakhlaoui, S.; Bourgou, S.; Chemat, F.; Ksouri, R. Pistacia Lentiscus L. Edible Oil: Green Extraction with Bio-Based Solvents, Metabolite Profiling and In Vitro Anti-Inflammatory Activity. OCL. 2019, 26, 25. DOI: 10.1051/ocl/2019024.
  • Bertouche, S.; Tomao, V.; Hellal, A.; Boutekedjiret, C.; Chemat, F. First Approach on Edible Oil Determination in Oilseeds Products Using Alpha-Pinene. J. Essent. Oil Res 2013, 25(6), 439–443. DOI: 10.1080/10412905.2013.782473.
  • Bertouche, S.; Tomao, V.; Ruiz, K.; Hellal, A.; Boutekedjiret, C.; Chemat, F. First Approach on Moisture Determination in Food Products Using Alpha-Pinene as an Alternative Solvent for Dean–Stark Distillation. Food Chem. 2012, 134(1), 602–605. DOI: 10.1016/j.foodchem.2012.02.158.
  • Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R. L.; Duarte, A. R. C. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS. Sustain. Chem. Eng 2014, 2(5), 1063–1071. DOI: 10.1021/sc500096j.
  • Florindo, C.; Lima, F.; Ribeiro, B. D.; Marrucho, I. M. Deep Eutectic Solvents: Overcoming 21st Century Challenges. Curr. Opin. Green Sustain. Chem. 2019, 18, 31–36. DOI: 10.1016/j.cogsc.2018.12.003.
  • Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc Rev. 2010, 39(1), 301–312. DOI: 10.1039/B918763B.
  • Uwineza, P. A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules. 2020, 25(17), 3847. DOI: 10.3390/molecules25173847.
  • Tolcha, T.; Gemechu, T.; Al‐Hamimi, S.; Megersa, N.; Turner, C. Multivariate Optimization of a Combined Static and Dynamic Supercritical Fluid Extraction Method for Trace Analysis of Pesticides Pollutants in Organic Honey. J. Sep. Sci. 2021, 44(8), 1716–1726. DOI: 10.1002/jssc.202100047.
  • Ferrentino, G.; Giampiccolo, S.; Morozova, K.; Haman, N.; Spilimbergo, S.; Scampicchio, M. Supercritical Fluid Extraction of Oils from Apple Seeds: Process Optimization, Chemical Characterization and Comparison with a Conventional Solvent Extraction. Innov. Food Sci. Emerg. Technol 2020, 64, 102428. DOI: 10.1016/j.ifset.2020.102428.
  • Khor, B.-K.; Chear, N. J.-Y.; Azizi, J.; Khaw, K.-Y. Chemical Composition, Antioxidant and Cytoprotective Potentials of Carica Papaya Leaf Extracts: A Comparison of Supercritical Fluid and Conventional Extraction Methods. Molecules 2021, 26(5), 1489. DOI: 10.3390/molecules26051489.
  • Khaw, K.-Y.; Parat, M.-O.; Shaw, P. N.; Falconer, J. R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules. 2017, 22(7), 1186. DOI: 10.3390/molecules22071186.
  • Pereira, C. G.; Meireles, M. A. A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food. Bioprocess. Technol. 2010, 3(3), 340–372. DOI: 10.1007/s11947-009-0263-2.
  • Reverchon, E.; De Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluids. 2006, 38(2), 146–166. DOI: 10.1016/j.supflu.2006.03.020.
  • Dhakane-Lad, J.; Kar, A. Supercritical CO2 Extraction of Lycopene from Pink Grapefruit (Citrus Paradise Macfad) and Its Degradation Studies During Storage. Food Chem. 2021, 361, 130113. DOI: 10.1016/j.foodchem.2021.130113.
  • Fierascu, R. C.; Fierascu, I.; Avramescu, S. M.; Sieniawska, E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams Through Advanced Extraction Techniques. Molecules. 2019, 24(23), 4212. DOI: 10.3390/molecules24234212.
  • Pitipanapong, J.; Chitprasert, S.; Goto, M.; Jiratchariyakul, W.; Sasaki, M.; Shotipruk, A. New Approach for Extraction of Charantin from Momordica Charantia with Pressurized Liquid Extraction. Sep. Purif. Technol 2007, 52(3), 416–422. DOI: 10.1016/j.seppur.2005.11.037.
  • Katsinas, N.; Bento Da Silva, A.; Enríquez-de-Salamanca, A.; Fernández, N.; Bronze, M. R.; Rodríguez-Rojo, S. Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS. Sustain. Chem. Eng 2021, 9(16), 5590–5602. DOI: 10.1021/acssuschemeng.0c09426.
  • Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; Elsevier, 2020; pp. 375–398. DOI: 10.1016/B978-0-12-816911-7.00013-X.
  • Uematsu, M.; Franck, E. U. Static Dielectric Constant of Water and Steam. J. Phys. Chem. Ref. Data. 1980, 9(4), 1291–1306. DOI: 10.1063/1.555632.
  • Kronholm, J.; Hartonen, K.; Riekkola, M.-L. Analytical Extractions with Water at Elevated Temperatures and Pressures. TrAC. Trends. Anal. Chem. 2007, 26(5), 396–412. DOI: 10.1016/j.trac.2007.03.004.
  • Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta. 2011, 703(1), 8–18. DOI: 10.1016/j.aca.2011.07.018.
  • Hirondart, M.; Rombaut, N.; Fabiano-Tixier, A. S.; Bily, A.; Chemat, F. Comparison Between Pressurized Liquid Extraction and Conventional Soxhlet Extraction for Rosemary Antioxidants, Yield, Composition, and Environmental Footprint. Foods. 2020, 9(5), 584. DOI: 10.3390/foods9050584.
  • Heydari, M.; Carbone, K.; Gervasi, F.; Parandi, E.; Rouhi, M.; Rostami, O.; Abedi-Firoozjah, R.; Kolahdouz-Nasiri, A.; Garavand, F.; Mohammadi, R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods. 2023, 12(17), 3181. DOI: 10.3390/foods12173181.
  • Subrahmanyam, K.; Gul, K.; Sehrawat, R.; Allai, F. M. Impact of In-Package Cold Plasma Treatment on the Physicochemical Properties and Shelf Life of Button Mushrooms (Agaricus Bisporus). Food Biosci 2023, 52, 102425. DOI: 10.1016/j.fbio.2023.102425.
  • Fernandes, F. A. N.; Rodrigues, S. Cold Plasma Processing on Fruits and Fruit Juices: A Review on the Effects of Plasma on Nutritional Quality. Processes 2021, 9(12), 2098. DOI: 10.3390/pr9122098.
  • Kumar, S.; Pipliya, S.; Srivastav, P. P. Effect of Cold Plasma on Different Polyphenol Compounds: A Review. J. Food. Process. Eng. 2023, 46(1), e14203. DOI: 10.1111/jfpe.14203.
  • Abouelenein, D.; Mustafa, A. M.; Nzekoue, F. K.; Caprioli, G.; Angeloni, S.; Tappi, S.; Castagnini, J. M.; Dalla Rosa, M.; Vittori, S. The Impact of Plasma Activated Water Treatment on the Phenolic Profile, Vitamins Content, Antioxidant and Enzymatic Activities of Rocket-Salad Leaves. Antioxidants. 2022, 12(1), 28. DOI: 10.3390/antiox12010028.
  • Rashid, F.; Bao, Y.; Ahmed, Z.; Huang, J.-Y. Effect of High Voltage Atmospheric Cold Plasma on Extraction of Fenugreek Galactomannan and Its Physicochemical Properties. Food. Res. Int. 2020, 138, 109776. DOI: 10.1016/j.foodres.2020.109776.
  • Bao, Y.; Reddivari, L.; Huang, J.-Y. Development of Cold Plasma Pretreatment for Improving Phenolics Extractability from Tomato Pomace. Innov. Food Sci. Emerg. Technol 2020, 65, 102445. DOI: 10.1016/j.ifset.2020.102445.
  • Keshavarzi, M.; Najafi, G.; Ahmadi Gavlighi, H.; Seyfi, P.; Ghomi, H. Enhancement of Polyphenolic Content Extraction Rate with Maximal Antioxidant Activity from Green Tea Leaves by Cold Plasma. J. Food. Sci. 2020, 85(10), 3415–3422. DOI: 10.1111/1750-3841.15448.
  • Bao, Y.; Reddivari, L.; Huang, J.-Y. Enhancement of Phenolic Compounds Extraction from Grape Pomace by High Voltage Atmospheric Cold Plasma. LWT. 2020, 133, 109970. DOI: 10.1016/j.lwt.2020.109970.
  • Faria, G. Y. Y.; Souza, M. M.; Oliveira, J. R. M.; Costa, C. S. B.; Collares, M. P.; Prentice, C. Effect of Ultrasound-Assisted Cold Plasma Pretreatment to Obtain Sea Asparagus Extract and Its Application in Italian Salami. Food. Res. Int. 2020, 137, 109435. DOI: 10.1016/j.foodres.2020.109435.
  • Mehta, D.; Yadav, K.; Chaturvedi, K.; Shivhare, U. S.; Yadav, S. K. Impact of Cold Plasma on Extraction of Polyphenol from De-Oiled Rice and Corn Bran: Improvement in Extraction Efficiency, in vitro Digestibility, Antioxidant Activity, Cytotoxicity and Anti-Inflammatory Responses. Food. Bioprocess. Technol. 2022, 15(5), 1142–1156. DOI: 10.1007/s11947-022-02801-8.
  • Boehm, D.; Heslin, C.; Cullen, P. J.; Bourke, P. Cytotoxic and Mutagenic Potential of Solutions Exposed to Cold Atmospheric Plasma. Sci. Rep. 2016, 6(1), 21464. DOI: 10.1038/srep21464.
  • Park, J. H.; Kumar, N.; Uhm, H. S.; Lee, W.; Choi, E. H.; Attri, P. Effect of Nanosecond-Pulsed Plasma on the Structural Modification of Biomolecules. RSC Adv. 2015, 5(59), 47300–47308. DOI: 10.1039/C5RA04993H.
  • Ayala, A.; Muñoz, M. F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 1–31. DOI: 10.1155/2014/360438.
  • Kumar Pandey, V.; Shams, R.; Singh, R.; Dar, A. H.; Pandiselvam, R.; Rusu, A. V.; Trif, M. A Comprehensive Review on Clove (Caryophyllus Aromaticus L.) Essential Oil and Its Significance in the Formulation of Edible Coatings for Potential Food Applications. Front. Nutr. 2022, 9, 987674. DOI: 10.3389/fnut.2022.987674.
  • Giacometti, J.; Žauhar, G.; Žuvić, M. Optimization of Ultrasonic-Assisted Extraction of Major Phenolic Compounds from Olive Leaves (Olea Europaea L.) Using Response Surface Methodology. Foods. 2018, 7(9), 149. DOI: 10.3390/foods7090149.
  • Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy. 2017, 7(3), 47. DOI: 10.3390/agronomy7030047.
  • Ma, Y.; Ye, X.; Hao, Y.; Xu, G.; Xu, G.; Liu, D. Ultrasound-Assisted Extraction of Hesperidin from Penggan (Citrus Reticulata) Peel. Ultrason. Sonochem. 2008, 15(3), 227–232. DOI: 10.1016/j.ultsonch.2007.03.006.
  • Martín-Del-Campo, A.; Fermín-Jiménez, J. A.; Fernández-Escamilla, V. V.; Escalante-García, Z. Y.; Macías-Rodríguez, M. E.; Estrada-Girón, Y. Improved Extraction of Carrageenan from Red Seaweed (Chondracantus Canaliculatus) Using Ultrasound-Assisted Methods and Evaluation of the Yield, Physicochemical Properties and Functional Groups. Food Sci. Biotechnol. 2021, 30(7), 901–910. DOI: 10.1007/s10068-021-00935-7.
  • Youssouf, L.; Lallemand, L.; Giraud, P.; Soulé, F.; Bhaw-Luximon, A.; Meilhac, O.; D’Hellencourt, C. L.; Jhurry, D.; Couprie, J. Ultrasound-Assisted Extraction and Structural Characterization by NMR of Alginates and Carrageenans from Seaweeds. Carbohydr. Polym. 2017, 166, 55–63. DOI: 10.1016/j.carbpol.2017.01.041.
  • Da Porto, C.; Porretto, E.; Decorti, D. Comparison of Ultrasound-Assisted Extraction with Conventional Extraction Methods of Oil and Polyphenols from Grape (Vitis Vinifera L.) Seeds. Ultrason. Sonochem. 2013, 20(4), 1076–1080. DOI: 10.1016/j.ultsonch.2012.12.002.
  • Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. DOI: 10.1016/j.ultsonch.2020.105325.
  • Maran, J. P.; Swathi, K.; Jeevitha, P.; Jayalakshmi, J.; Ashvini, G. Microwave-Assisted Extraction of Pectic Polysaccharide from Waste Mango Peel. Carbohydr. Polym. 2015, 123, 67–71. DOI: 10.1016/j.carbpol.2014.11.072.
  • Azaroual, L.; Liazid, A.; Mansouri, F. E.; Brigui, J.; Ruíz-Rodriguez, A.; Barbero, G. F.; Palma, M. Optimization of the Microwave-Assisted Extraction of Simple Phenolic Compounds from Grape Skins and Seeds. Agronomy. 2021, 11(8), 1527. DOI: 10.3390/agronomy11081527.
  • Alara, O. R.; Abdurahman, N. H.; Abdul Mudalip, S. K. Optimizing Microwave‐Assisted Extraction Conditions to Obtain Phenolic‐Rich Extract from Chromolaena Odorata Leaves. Chem. Eng. Technol 2019, 42(9), 1733–1740. DOI: 10.1002/ceat.201800462.
  • Hu, B.; Xi, X.; Li, H.; Qin, Y.; Li, C.; Zhang, Z.; Liu, Y.; Zhang, Q.; Liu, A.; Liu, S., et al. A Comparison of Extraction Yield, Quality and Thermal Properties from Sapindus Mukorossi Seed Oil Between Microwave Assisted Extraction and Soxhlet Extraction. Ind. Crops. Prod. 2021, 161, 113185. DOI: 10.1016/j.indcrop.2020.113185.
  • Molina, G. A.; González-Fuentes, F.; Loske, A. M.; Fernández, F.; Estevez, M. Shock Wave-Assisted Extraction of Phenolic Acids and Flavonoids from Eysenhardtia Polystachya Heartwood: A Novel Method and Its Comparison with Conventional Methodologies. Ultrason. Sonochem. 2020, 61, 104809. DOI: 10.1016/j.ultsonch.2019.104809.
  • Darasia, M.; Hasizah, M.; Rahmaniar, A. Comparison of Soxhletation and Microwave Assisted Extraction Method for Extracting Polyphenols in Cacao Pod Husks (Theobroma Cacao L.). IOP Conf. Ser. Earth Environ. Sci. 2023, 1200(1), 012038. DOI: 10.1088/1755-1315/1200/1/012038.
  • Pan, X.; Niu, G.; Liu, H. Comparison of Microwave-Assisted Extraction and Conventional Extraction Techniques for the Extraction of Tanshinones from Salvia Miltiorrhiza Bunge. Biochem. Eng. J. 2002, 12(1), 71–77. DOI: 10.1016/S1369-703X(02)00039-6.
  • Usman, M.; Nakagawa, M.; Cheng, S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes. 2023, 11(12), 3444. DOI: 10.3390/pr11123444.
  • Cardarelli, C. R.; Benassi, M. D. T.; Mercadante, A. Z. Characterization of Different Annatto Extracts Based on Antioxidant and Colour Properties. LWT - Food Sci. Technol. 2008, 41(9), 1689–1693. DOI: 10.1016/j.lwt.2007.10.013.
  • Jiao, Z.; Guo, Z.; Zhang, S.; Chen, H. Microwave-Assisted Micro-Solid-Phase Extraction for Analysis of Tetracycline Antibiotics in Environmental Samples. Int. J. Environ. Anal. Chem. 2015, 95(1), 82–91. DOI: 10.1080/03067319.2014.983497.
  • Pastare, L.; Berga, M.; Kienkas, L.; Boroduskis, M.; Ramata-Stunda, A.; Reihmane, D.; Senkovs, M.; Skudrins, G.; Nakurte, I. Exploring the Potential of Supercritical Fluid Extraction of Matricaria Chamomilla White Ray Florets as a Source of Bioactive (Cosmetic) Ingredients. Antioxidants 2023, 12(5), 1092. DOI: 10.3390/antiox12051092.
  • Scalia, S.; Giuffreda, L.; Pallado, P. Analytical and Preparative Supercritical Fluid Extraction of Chamomile Flowers and Its Comparison with Conventional Methods. J. Pharm. Biomed. Anal. 1999, 21(3), 549–558. DOI: 10.1016/S0731-7085(99)00152-1.
  • Bello, U.; Amran, N. A.; Samsuri, S.; Ruslan, M. S. H. K. Thermodynamic Studies, and Parametric Effects of Supercritical CO2 Extraction of Banana Peel Wastes. Sustain. Chem. Pharm. 2023, 31, 100912. DOI: 10.1016/j.scp.2022.100912.
  • Putra, N. R.; Aziz, A. H. A.; Faizal, A. N. M.; Che Yunus, M. A. Methods and Potential in Valorization of Banana Peels Waste by Various Extraction Processes: In Review. Sustainability 2022, 14(17), 10571. DOI: 10.3390/su141710571.
  • Ortiz-Viedma, J.; Bastias-Montes, J. M.; Char, C.; Vega, C.; Quintriqueo, A.; Gallón-Bedoya, M.; Flores, M.; Aguilera, J. M.; Miranda, J. M.; Barros-Velázquez, J. Sequential Biorefining of Bioactive Compounds of High Functional Value from Calafate Pomace (Berberis Microphylla) Using Supercritical CO2 and Pressurized Liquids. Antioxidants. 2023, 12(2), 323. DOI: 10.3390/antiox12020323.
  • Fraguela-Meissimilly, H.; Bastías-Montes, J. M.; Ortiz-Viedma, J. A.; Tamarit-Pino, Y.; Claret-Merino, M.; Araneda-Flores, J. Valorization of Extracts from Maqui (Aristotelia Chilensis) and Calafate (Berberis Microphylla) Biowaste Blends by Supercritical Fluid and Pressurized Liquid Extraction. J. Agric. Food. Res. 2024, 15, 100950. DOI: 10.1016/j.jafr.2023.100950.
  • Tunna, T. S.; Sarker, M. Z. I.; Ghafoor, K.; Ferdosh, S.; Jaffri, J. M.; Al-Juhaimi, F. Y.; Ali, M. E.; Akanda, M. J. H.; Awal, M. S.; Ahmed, Q. U., et al. In Vitro, and Quantification Study of Antidiabetic Compounds from Neglected Weed Mimosa Pudica Using Supercritical CO 2 and CO 2 -Soxhlet. Sep. Sci. Technol. 2018, 53(2), 243–260. DOI: 10.1080/01496395.2017.1384015.
  • Liu, X.; Ou, H.; Xiang, Z.; Gregersen, H. Ultrasound Pretreatment Combined with Supercritical CO2 Extraction of Iberis Amara Seed Oil. J. Appl. Res. Med. Aromat. Plants. 2020, 18, 100265. DOI: 10.1016/j.jarmap.2020.100265.
  • Liu, X.-Y.; Ou, H.; Xiang, Z.-B.; Gregersen, H. Optimization, Chemical Constituents and Bioactivity of Essential Oil from Iberis Amara Seeds Extracted by Ultrasound-Assisted Hydro-Distillation Compared to Conventional Techniques. J. Appl. Res. Med. Aromat. Plants. 2019, 13, 100204. DOI: 10.1016/j.jarmap.2019.100204.
  • Aravena, R. I.; Del Valle, J. M.; De La Fuente, J. C. Supercritical CO2 Extraction of Aqueous Suspensions of Disrupted Haematococcus Pluvialis Cysts. J. Supercrit. Fluids. 2022, 181, 105392. DOI: 10.1016/j.supflu.2021.105392.
  • Souza, M. C.; Silva, L. C.; Chaves, J. O.; Salvador, M. P.; Sanches, V. L.; Da Cunha, D. T.; Foster Carneiro, T.; Rostagno, M. A. Simultaneous Extraction and Separation of Compounds from Mate (Ilex Paraguariensis) Leaves by Pressurized Liquid Extraction Coupled with Solid-Phase Extraction and In-Line UV Detection. Food Chem. Mol. Sci. 2021, 2, 100008. DOI: 10.1016/j.fochms.2020.100008.
  • Jacques, R. A.; Dos Santos Freitas, L.; Pérez, V. F.; Dariva, C.; De Oliveira, A. P.; De Oliveira, J. V.; Caramão, E. B. The Use of Ultrasound in the Extraction of Ilex Paraguariensis Leaves: A Comparison with Maceration. Ultrason. Sonochem. 2007, 14(1), 6–12. DOI: 10.1016/j.ultsonch.2005.11.007.
  • Jacques, R. A.; Dariva, C.; De Oliveira, J. V.; Caramão, E. B. Pressurized Liquid Extraction of Mate Tea Leaves. Anal. Chim. Acta. 2008, 625(1), 70–76. DOI: 10.1016/j.aca.2008.07.002.
  • Aliaño-González, M. J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J. A.; Ayuso, J.; Barbero, G. F. Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe Oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy 2020, 10(2), 183. DOI: 10.3390/agronomy10020183.
  • Garcia-Mendoza, M. D. P.; Espinosa-Pardo, F. A.; Baseggio, A. M.; Barbero, G. F.; Maróstica Junior, M. R.; Rostagno, M. A.; Martínez, J. Extraction of Phenolic Compounds and Anthocyanins from Juçara (Euterpe Edulis Mart.) Residues Using Pressurized Liquids and Supercritical Fluids. J. Supercrit. Fluids 2017, 119, 9–16. DOI: 10.1016/j.supflu.2016.08.014.
  • Okada, Y.; Motoya, T.; Tanimoto, S.; Nomura, M. A Study on Fatty Acids in Seeds of Euterpe Oleracea Mart Seeds. J. Oleo. Sci. 2011, 60(9), 463–467. DOI: 10.5650/jos.60.463.
  • Supasatyankul, B.; Saisriyoot, M.; Klinkesorn, U.; Rattanaporn, K.; Sae-Tan, S. Extraction of Phenolic and Flavonoid Compounds from Mung Bean (Vigna Radiata L.) Seed Coat by Pressurized Liquid Extraction. Molecules 2022, 27(7), 2085. DOI: 10.3390/molecules27072085.
  • Carrero-Carralero, C.; Mansukhani, D.; Ruiz-Matute, A. I.; Martínez-Castro, I.; Ramos, L.; Sanz, M. L. Extraction and Characterization of Low Molecular Weight Bioactive Carbohydrates from Mung Bean (Vigna Radiata). Food Chem. 2018, 266, 146–154. DOI: 10.1016/j.foodchem.2018.05.114.
  • Zia‐Ul‐Haq, M.; Ahmad, M.; Iqbal, S. Characteristics of Oil from Seeds of 4 Mungbean [Vigna Radiata (L.) Wilczek] Cultivars Grown in Pakistan. J. Am. Oil Chem. Soc. 2008, 85(9), 851–856. DOI: 10.1007/s11746-008-1269-z.
  • Chaves, J. O.; Sanches, V. L.; Viganó, J.; De Souza Mesquita, L. M.; De Souza, M. C.; Da Silva, L. C.; Acunha, T.; Faccioli, L. H.; Rostagno, M. A. Integration of Pressurized Liquid Extraction and In-Line Solid-Phase Extraction to Simultaneously Extract and Concentrate Phenolic Compounds from Lemon Peel (Citrus Limon L.). Food. Res. Int. 2022, 157, 111252. DOI: 10.1016/j.foodres.2022.111252.
  • Li, B.; Smith, B.; Hossain, M., Md. Extraction of Phenolics from Citrus Peels. Sep. Purif. Technol 2006, 48(2), 182–188. DOI: 10.1016/j.seppur.2005.07.005.
  • Muñoz, O. M.; Maya, J. D.; Ferreira, J.; Christen, P.; Martin, J. S.; López-Muñoz, R.; Morello, A.; Kemmerling, U. Medicinal Plants of Chile: Evaluation of Their Anti-Trypanosoma Cruzi Activity. Z. Für. Naturforschung. C. 2013, 68(5–6), 198–202. DOI: 10.1515/znc-2013-5-605.
  • Sánchez-Martínez, J. D.; Alvarez-Rivera, G.; Gallego, R.; Fagundes, M. B.; Valdés, A.; Mendiola, J. A.; Ibañez, E.; Cifuentes, A. Neuroprotective Potential of Terpenoid-Rich Extracts from Orange Juice By-Products Obtained by Pressurized Liquid Extraction. Food Chem. X 2022, 13, 100242. DOI: 10.1016/j.fochx.2022.100242.
  • Kusrini, E.; Mawarni, D.; Mamat, M.; Prasetyanto, E.; Usman, A. Comparison of Antibacterial Activity in Ethanol Extract and Essential Oil of Citrus Sinensis (L.) Peels Obtained by Sohxlet and Distillation Methods. IOP Conf. Ser. Mater. Sci. Eng. 2018, 440, 012028. DOI: 10.1088/1757-899X/440/1/012028.
  • Julianti, T.; Oufir, M.; Hamburger, M. Quantification of the Antiplasmodial Alkaloid Carpaine in Papaya (Carica Papaya) Leaves. Planta Med. 2014, 80(13), 1138–1142. DOI: 10.1055/s-0034-1382948.
  • Lara-Abia, S.; Gomez-Maqueo, A.; Welti-Chanes, J.; Cano, M. P. High Hydrostatic Pressure-Assisted Extraction of Carotenoids from Papaya (Carica Papaya L. Cv. Maradol) Tissues Using Soybean and Sunflower Oil as Potential Green Solvents. Food Eng. Rev. 2021, 13(3), 660–675. DOI: 10.1007/s12393-021-09289-6.
  • Chada, P. S. N.; Santos, P. H.; Rodrigues, L. G. G.; Goulart, G. A. S.; Azevedo Dos Santos, J. D.; Maraschin, M.; Lanza, M. Non-Conventional Techniques for the Extraction of Antioxidant Compounds and Lycopene from Industrial Tomato Pomace (Solanum Lycopersicum L.) Using Spouted Bed Drying as a Pre-Treatment. Food Chem. X 2022, 13, 100237. DOI: 10.1016/j.fochx.2022.100237.
  • Corrêa-Filho, L. C.; Lourenço, S. C.; Duarte, D. F.; Moldão-Martins, M.; Alves, V. D. Microencapsulation of Tomato (Solanum Lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Appl. Sci. 2019, 9(3), 612. DOI: 10.3390/app9030612.
  • El-Ghorab, A. H.; Nauman, M.; Anjum, F. M.; Hussain, S.; Nadeem, M. A Comparative Study on Chemical Composition and Antioxidant Activity of Ginger (Zingiber Officinale) and Cumin (Cuminum Cyminum). J. Agric. Food Chem. 2010, 58(14), 8231–8237. DOI: 10.1021/jf101202x.
  • Sharanyakanth, P. S.; Lokeswari, R.; Mahendran, R. Plasma Bubbling Effect on Essential Oil Yield, Extraction Efficiency, and Flavor Compound of Cuminum Cyminum L Seeds. J. Food. Process. Eng. 2021, 44(7), e13730. DOI: 10.1111/jfpe.13730.
  • Saha, S.; Walia, S.; Kundu, A.; Sharma, K.; Singh, J.; Tripathi, B.; Raina, A. Compositional and Functional Difference in Cumin (Cuminum Cyminum) Essential Oil Extracted by Hydrodistillation and SCFE. Cogent. Food. Agric. 2016, 2(1), 1. DOI: 10.1080/23311932.2016.1143166.
  • Kungsuwan, K.; Sawangrat, C.; Ounjaijean, S.; Chaipoot, S.; Phongphisutthinant, R.; Wiriyacharee, P. Enhancing Bioactivity and Conjugation in Green Coffee Bean (Coffea Arabica) Extract Through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic–Protein Conjugates. Molecules. 2023, 28(20), 7066. DOI: 10.3390/molecules28207066.
  • Tarasov, A.; Bochkova, A.; Muzyukin, I.; Chugunova, O.; Stozhko, N. The Effect of Pre-Treatment of Arabica Coffee Beans with Cold Atmospheric Plasma, Microwave Radiation, Slow and Fast Freezing on Antioxidant Activity of Aqueous Coffee Extract. Appl. Sci. 2022, 12(12), 5780. DOI: 10.3390/app12125780.
  • Lopes, G. R.; Passos, C. P.; Rodrigues, C.; Teixeira, J. A.; Coimbra, M. A. Impact of Microwave-Assisted Extraction on Roasted Coffee Carbohydrates, Caffeine, Chlorogenic Acids and Coloured Compounds. Food. Res. Int. 2020, 129, 108864. DOI: 10.1016/j.foodres.2019.108864.
  • Pandhair, V.; Sharma, S. Accumulation of Capsaicin in Seed, Pericarp and Placenta of Capsicum Annuum L Fruit. J. Plant. Biochem. Biotechnol. 2008, 17(1), 23–27. DOI: 10.1007/BF03263255.
  • Zhang, X.-L.; Zhong, C.-S.; Mujumdar, A. S.; Yang, X.-H.; Deng, L.-Z.; Wang, J.; Xiao, H.-W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum Annuum L.). J. Food. Eng. 2019, 241, 51–57. DOI: 10.1016/j.jfoodeng.2018.08.002.
  • Boonkird, S.; Phisalaphong, C.; Phisalaphong, M. Ultrasound-Assisted Extraction of Capsaicinoids from Capsicum Frutescens on a Lab- and Pilot-Plant Scale. Ultrason. Sonochem. 2008, 15(6), 1075–1079. DOI: 10.1016/j.ultsonch.2008.04.010.
  • Wang, X. Y.; Han, Z. T.; Dong, Z. Y.; Zhang, T. H.; Duan, J. W.; Ai, L.; Xu, Y. Y. Atmospheric-Pressure Cold Plasma-Assisted Enzymatic Extraction of High-Temperature Soybean Meal Proteins and Effects on Protein Structural and Functional Properties. Innov. Food Sci. Emerg. Technol 2024, 92, 103586. DOI: 10.1016/j.ifset.2024.103586.
  • Luthria, D.; Biswas, R.; Natarajan, S. Comparison of Extraction Solvents and Techniques Used for the Assay of Isoflavones from Soybean. Food Chem. 2007, 105(1), 325–333. DOI: 10.1016/j.foodchem.2006.11.047.
  • Guneser, B. A.; Yilmaz, E. B. Aromatics and Sensory Properties of Cold‐Pressed and Hexane‐Extracted Lemon (Citrus Limon L.) Seed Oils. J. Am. Oil Chem. Soc. 2017, 94(5), 723–731. DOI: 10.1007/s11746-017-2977-z.
  • Almeida, F. D. L.; Gomes, W. F.; Cavalcante, R. S.; Tiwari, B. K.; Cullen, P. J.; Frias, J. M.; Bourke, P.; Fernandes, F. A. N.; Rodrigues, S. Fructooligosaccharides Integrity After Atmospheric Cold Plasma and High-Pressure Processing of a Functional Orange Juice. Food. Res. Int. 2017, 102, 282–290. DOI: 10.1016/j.foodres.2017.09.072.
  • Gupta, I.; Adin, S. N.; Aqil, M.; Mujeeb, M. QbD Based Extraction of Naringin from Citrus Sinensis L. Peel and Its Antioxidant Activity. Pharmacogn. Res. 2022, 15(1), 145–154. DOI: 10.5530/097484900241.
  • Desgrouas, C.; Baghdikian, B.; Mabrouki, F.; Bory, S.; Taudon, N.; Parzy, D.; Ollivier, E. R.; Extraction, G. Assisted by Microwave and Ultrasound of Cepharanthine from Stephania Rotunda Lour. Sep. Purif. Technol 2014, 123, 9–14. DOI: 10.1016/j.seppur.2013.12.016.
  • He, Q.; Lei, Q.; Huang, S.; Zhou, Y.; Liu, Y.; Zhou, S.; Peng, D.; Deng, X.; Xue, J.; Li, X., et al. Effective Extraction of Bioactive Alkaloids from the Roots of Stephania Tetrandra by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. J. Chromatogr. A. 2023, 1689, 463746. DOI: 10.1016/j.chroma.2022.463746.
  • Wang, L.; Bai, M.; Qin, Y.; Liu, B.; Wang, Y.; Zhou, Y. Application of Ionic Liquid-Based Ultrasonic-Assisted Extraction of Flavonoids from Bamboo Leaves. Molecules. 2018, 23(9), 2309. DOI: 10.3390/molecules23092309.
  • Nuzul, M. I.; Jong, V. Y. M.; Koo, L. F.; Chan, T. H.; Ang, C. H.; Idris, J.; Husen, R.; Wong, S. W. Effects of Extraction Methods on Phenolic Content in the Young Bamboo Culm Extracts of Bambusa Beecheyana Munro. Molecules 2022, 27(7), 2359. DOI: 10.3390/molecules27072359.
  • Yang, Z.; Yue, S.-J.; Gao, H.; Zhang, Q.; Xu, D.-Q.; Zhou, J.; Li, J.-J.; Tang, Y.-P. Natural Deep Eutectic Solvent-Ultrasound Assisted Extraction: A Green Approach for Ellagic Acid Extraction from Geum Japonicum. Front. Nutr. 2023, 9, 1079767. DOI: 10.3389/fnut.2022.1079767.
  • Kim, J. B.; Kim, J. B.; Cho, K. J.; König, G. M.; Wright, A. D. Antioxidant Activity of 3,4,5-Trihydroxybenzaldehyde Isolated from Geum Japonicum. J. Food Drug. Anal. 2020, 14(2). DOI: 10.38212/2224-6614.2492.
  • Thilakarathna, R. C. N.; Siow, L. F.; Tang, T.-K.; Chan, E.-S.; Lee, Y.-Y. Physicochemical and Antioxidative Properties of Ultrasound-Assisted Extraction of Mahua (Madhuca Longifolia) Seed Oil in Comparison with Conventional Soxhlet and Mechanical Extractions. Ultrason. Sonochem. 2023, 92, 106280. DOI: 10.1016/j.ultsonch.2022.106280.
  • Xue, H.; Li, J.; Wang, G.; Zuo, W.; Zeng, Y.; Liu, L. Ultrasound-Assisted Extraction of Flavonoids from Potentilla Fruticosa L. Using Natural Deep Eutectic Solvents. Molecules. 2022, 27(18), 5794. DOI: 10.3390/molecules27185794.
  • Kalia, K.; Sharma, K.; Singh, H. P.; Singh, B. Effects of Extraction Methods on Phenolic Contents and Antioxidant Activity in Aerial Parts of Potentilla Atrosanguinea Lodd. and Quantification of Its Phenolic Constituents by RP-HPLC. J. Agric. Food Chem. 2008, 56(21), 10129–10134. DOI: 10.1021/jf802188b.
  • Liang, Q.; Zhang, J.; Su, X.; Meng, Q.; Dou, J. Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules. 2019, 24(4), 778. DOI: 10.3390/molecules24040778.
  • Lee, J.-H.; Ko, M.-J.; Chung, M.-S. Subcritical Water Extraction of Bioactive Components from Red Ginseng (Panax Ginseng C.A. Meyer). J. Supercrit. Fluids. 2018, 133, 177–183. DOI: 10.1016/j.supflu.2017.09.029.
  • Patra, J. K.; Das, G.; Lee, S.; Kang, S.-S.; Shin, H.-S. Selected Commercial Plants: A Review of Extraction and Isolation of Bioactive Compounds and Their Pharmacological Market Value. Trends Food. Sci. Technol. 2018, 82, 89–109. DOI: 10.1016/j.tifs.2018.10.001.
  • Jafari, S.; Karami, Z.; Shiekh, K. A.; Kijpatanasilp, I.; Worobo, R. W.; Assatarakul, K. Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients. Foods. 2023, 12(2), 412. DOI: 10.3390/foods12020412.
  • Ramos-Escudero, F.; Casimiro-Gonzales, S.; Fernández-Prior, Á.; Cancino Chávez, K.; Gómez-Mendoza, J.; Fuente-Carmelino, L. D. L.; Muñoz, A. M. C. Fatty Acids, Bioactive Compounds, and Total Antioxidant Capacity in Commercial Cocoa Beans (Theobroma Cacao L.). LWT 2021, 147, 111629. DOI: 10.1016/j.lwt.2021.111629.
  • González-Silva, N.; Nolasco-González, Y.; Aguilar-Hernández, G.; Sáyago-Ayerdi, S. G.; Villagrán, Z.; Acosta, J. L.; Montalvo-González, E.; Anaya-Esparza, L. M. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium Cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules. 2022, 27(11), 3557. DOI: 10.3390/molecules27113557.
  • Meregalli, M. M.; Puton, B. M. S.; Camera, F. D.; Amaral, A. U.; Zeni, J.; Cansian, R. L.; Mignoni, M. L.; Backes, G. T. Conventional and Ultrasound-Assisted Methods for Extraction of Bioactive Compounds from Red Araçá Peel (Psidium Cattleianum Sabine). Arab. J. Chem. 2020, 13(6), 5800–5809. DOI: 10.1016/j.arabjc.2020.04.017.
  • Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Microwave-Assisted Extraction for Hibiscus Sabdariffa Bioactive Compounds. J. Pharm. Biomed. Anal. 2018, 156, 313–322. DOI: 10.1016/j.jpba.2018.04.050.
  • Peredo Pozos, G. I.; Ruiz-López, M. A.; Zamora Nátera, J. F.; Álvarez Moya, C.; Barrientos Ramírez, L.; Reynoso Silva, M.; Rodríguez Macías, R.; García-López, P. M.; González Cruz, R.; Salcedo Pérez, E., et al. Antioxidant Capacity and Antigenotoxic Effect of Hibiscus Sabdariffa L. Extracts Obtained with Ultrasound-Assisted Extraction Process. Appl. Sci. 2020, 10(2), 560. DOI: 10.3390/app10020560.
  • Boukerche, H.; Malki, F.; Saidji, N.; Ghaliaoui, N.; Bensalem, A.; Mokrane, H. Combination of Ultrasound, Microwave and Conventional Extraction Techniques for Roselle (Hibiscus Sabdariffa. L.) Total Anthocyanins and Phenolics Recovery: Effect on Antioxidant and Structural Properties. Biomass Convers. Biorefin. 2023. DOI: 10.1007/s13399-023-04029-8.
  • Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized Microwave-Assisted Extraction of Phenolic Acids from Citrus Mandarin Peels and Evaluation of Antioxidant Activity in vitro. Sep. Purif. Technol 2009, 70(1), 63–70. DOI: 10.1016/j.seppur.2009.08.012.
  • Hh, B.; Galali, Y.; Aa, O.; Karaoğul, E.; Altuntas, E.; Mt, U.; Am, G.; Mh, A. Evaluation of Antioxidant and Antimicrobial Activities of Mandarin Peel (Citrus Reticulata Blanco) with Microwave Assisted Extract Using Two Different Solvents. Asian J. Plant. Sci 2020, 19(3), 223–229. DOI: 10.3923/ajps.2020.223.229.
  • Jagannath, A.; Biradar, R. Comparative Evaluation of Soxhlet and Ultrasonics on the Structural Morphology and Extraction of Bioactive Compounds of Lemon (Citrus Limon L.) Peel. J. Food Chem. Nanotechnol 2019, 05(03), 03. DOI: 10.17756/jfcn.2019-072.
  • Rodríguez‐Pérez, C.; Gilbert‐López, B.; Mendiola, J. A.; Quirantes‐Piné, R.; Segura‐Carretero, A.; Ibáñez, E. Optimization of Microwave‐Assisted Extraction and Pressurized Liquid Extraction of Phenolic Compounds from Moringa Oleifera Leaves by Multiresponse Surface Methodology. Electrophoresis. 2016, 37(13), 1938–1946. DOI: 10.1002/elps.201600071.
  • Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of Extraction Method to Obtain a Phenolic Compounds-Rich Extract from Moringa Oleifera Lam Leaves. Ind. Crops. Prod. 2015, 66, 246–254. DOI: 10.1016/j.indcrop.2015.01.002.
  • Ojewumi, M. E.; Oyekunle, D. T.; Emetere, M. E.; Olanipekun, O. O. Optimization of Oil from Moringa Oleifera Seed Using Soxhlet Extraction Method. Korean J. Food. Health. Converg. 2019, 5(5), 11–25. DOI: 10.13106/KJFHC.2019.VOL5.NO5.11.
  • Ameer, K.; Bae, S.-W.; Jo, Y.; Lee, H.-G.; Ameer, A.; Kwon, J.-H. Optimization of Microwave-Assisted Extraction of Total Extract, Stevioside and Rebaudioside-A from Stevia Rebaudiana (Bertoni) Leaves Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Modelling. Food Chem. 2017, 229, 198–207. DOI: 10.1016/j.foodchem.2017.01.121.
  • Pan, X.; Liu, H.; Jia, G.; Shu, Y. Y. Microwave-Assisted Extraction of Glycyrrhizic Acid from Licorice Root. Biochem. Eng. J. 2000, 5(3), 173–177. DOI: 10.1016/S1369-703X(00)00057-7.
  • Pan, Y.; He, C.; Wang, H.; Ji, X.; Wang, K.; Liu, P. Antioxidant Activity of Microwave-Assisted Extract of Buddleia Officinalis and Its Major Active Component. Food Chem. 2010, 121(2), 497–502. DOI: 10.1016/j.foodchem.2009.12.072.
  • Thong-On, W.; Pathomwichaiwat, T.; Boonsith, S.; Koo-Amornpattana, W.; Prathanturarug, S. Green Extraction Optimization of Triterpenoid Glycoside-Enriched Extract from Centella Asiatica (L.) Urban Using Response Surface Methodology (RSM). Sci. Rep. 2021, 11(1), 22026. DOI: 10.1038/s41598-021-01602-x.
  • Idris, F. N.; Mohd Nadzir, M. Comparative Studies on Different Extraction Methods of Centella Asiatica and Extracts Bioactive Compounds Effects on Antimicrobial Activities. Antibiotics. 2021, 10(4), 457. DOI: 10.3390/antibiotics10040457.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.