216
Views
5
CrossRef citations to date
0
Altmetric
Articles

Phosphite and Phosphate Have Contrasting Effects on Nutrient Status of Plants

Pages 421-432 | Received 06 Jan 2016, Accepted 30 Mar 2016, Published online: 21 Jun 2016

References

  • Ávila, F. W., V. Faquin, A. K. S. Lobato, P. A. Ávila, D. J. Marques, E. M. S. Guedes, and D. K. Y. Tan. 2013. Effect of phosphite supply in nutrient solution on yield, phosphorus nutrition and enzymatic behavior in common bean (Phaseolus vulgaris L.) plants. Australian Journal Crop Sciences 7:713–22.
  • Bataglia, O. C., A. M. C. Furlani, J. P. F. Teixeira, P. R. Furlani, and J. R. Gallo. 1983. Método de análise química de plantas, 48. São Paulo, Brazil: Instituto Agronômico. (Boletim técnico n.78).
  • Clemens, S. 2001. Molecular mechanisms of plant metal homeostasis and tolerance. Planta 212:475–86. doi:10.1007/s004250000458.
  • Danova-Alt, R., C. Dijkema, P. Waard, and M. Kock. 2008. Transport and compartmentation of phosphite in higher plant cells - kinetic and 31P nuclear magnetic resonance studies. Plant, Cell & Environment 31:1510–21. doi:10.1111/pce.2008.31.issue-10.
  • de Groot, C. C., L. F. M. Marcelis, R. van den Boogaard, W. M. Kaiser, and H. Lambers. 2003. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248:257–68. doi:10.1023/A:1022323215010.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909–30. doi:10.1016/j.plaphy.2010.08.016.
  • Goss, M. J., and G. P. R. Carvalho. 1992. Manganese toxicity: The significance of magnesium for the sensitivity of wheat plants. Plant Soil 139:91–98. doi:10.1007/BF00012846.
  • Haldar, M., and L. N. Mandal. 1981. Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice. Plant Soil 59:415–25. doi:10.1007/BF02184546.
  • Haneklaus, S., E. Bloem, E. Schnug, L. J. Kok, and I. Stulen. 2007. Sulfur. In Handbook of plant nutrition, eds. A. V. Barker, and D. J. Pilbeam, 145–82. Boca Raton, FL: Taylor & Francis Group.
  • Hermans, C., M. Vuylsteke, F. Coppens, S. M. Cristescu, F. J. M. Harren, D. Inzé, and N. Verbruggen. 2010. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist 187:132–44. doi:10.1111/j.1469-8137.2010.03257.x.
  • Jackson, T. J., T. Burgess, I. Colquhoun, and G. E. Hardy. 2000. Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology 49:147–54. doi:10.1046/j.1365-3059.2000.00422.x.
  • Jeschke, W. D., E. A. Kirkby, A. D. Peuke, J. S. Pate, and W. Hartung. 1997. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). Journal of Experimental Botany 48:75–91. doi:10.1093/jxb/48.1.75.
  • Jost, R., M. Pharmawati, H. R. Lapis-Gaza, C. Rossig, O. Berkowitz, H. Lambers, and P. M. Finnegan. 2015. Differentiating phosphate-dependent and phosphate independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. Journal of Experimental Botany 66:2501–14. doi:10.1093/jxb/erv025.
  • Liu, J., J. Yang, R. Li, L. Shi, C. Zhang, Y. Long, F. Xu, and J. Meng. 2009. Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments. Plant Soil 320:255–66. doi:10.1007/s11104-009-9891-6.
  • Marschner, H. 1995. Mineral Nutrition of higher plants, 2nd ed. San Diego, CA: Academic Press.
  • Merhaut, D. J. 2007. Magnesium. In Handbook of plant nutrition, eds A. V. Barker, and D. J. Pilbeam, 145–82. Boca Raton, FL: Taylor & Francis Group.
  • Moor, U., P. Poldma, T. Tonutare, K. Karp, M. Starast, and E. Vool. 2009. Effect of phosphite fertilization on growth, yield and fruit composition of strawberries. Scientia Horticulturae 119:264–69. doi:10.1016/j.scienta.2008.08.005.
  • Orbovic, V., J. P. Syvertsen, D. Bright, D. L. Van Clief, and J. H. Graham. 2008. Growth of citrus seedlings and their susceptibility to Phytophthora root rot are affected by PO3 and PO4 sources of phosphorus. Journal of Plant Nutrition 31:774–87. doi:10.1080/01904160801928448.
  • Pérez-López, U., J. Miranda-Apodaca, A. Mena-Petite, and A. Munoz-Rueda. 2014. Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environmental and Experimental Botany 99:86–99. doi:10.1016/j.envexpbot.2013.11.004.
  • Raij, B. V., H. Cantarella, J. A. Quaggio, and A. M. C. Furlani. 1997. Recomendações de adubação e calagem para o Estado de São Paulo, 2nd ed., 285. São Paulo, Brazil: Instituto Agronômico. (Boletim técnico, 100).
  • Ratjen, A. M., and J. Gerendás. 2009. A critical assessment of the suitability of phosphite as a source of phosphorus. Journal Plant Nutritional Soil Sciences 172:821–28. doi:10.1002/jpln.200800287.
  • Rouached, H. 2011. Multilevel coordination of phosphate and sulfate homeostasis in plants. Plant Signaling & Behavior 6:952–55. doi:10.4161/psb.6.7.15318.
  • Thao, H. T. B., T. Yamakawa, A. K. Myint, and P. S. Sarr. 2008a. Effects of phosphite, a reduced form of phosphate, on the growth and phosphorus nutrition of spinach (Spinacia oleracea L.). Soil Science and Plant Nutrition 54:761–68. doi:10.1111/j.1747-0765.2008.00290.x.
  • Thao, H. T. B., T. Yamakawa, and K. Shibata. 2009. Effect of phosphite-phosphate interaction on growth and quality of hydroponic lettuce (Lactuca sativa). Journal Plant Nutritional Soil Sciences 172:378–84. doi:10.1002/jpln.v172:3.
  • Thao, H. T. B., T. Yamakawa, K. Shibata, P. S. Sarr, and A. K. Myint. 2008b. Growth response of komatsuna (Brassica rapa var. peruviridis) to root and foliar applications of phosphite. Plant Soil 308:1–10. doi:10.1007/s11104-008-9598-0.
  • Wong, M. H., and A. D. Bradshaw. 1982. Comparison of the toxicity of heavy metals, using root elongation of rye grass. New Phytologist 91:255–61. doi:10.1111/nph.1982.91.issue-2.
  • Zambrosi, F. C. B., D. Mattos Jr, and J. P. Syvertsen. 2011. Plant growth, leaf photosynthesis, and nutrient-use efficiency of citrus rootstocks decrease with phosphite supply. Journal of Plant Nutrition and Soil Science 174:487–95. doi:10.1002/jpln.v174.3.
  • Zambrosi, F. C. B., G. L. Mesquita, F. A. Tanaka, J. A. Quaggio, and D. Mattos Jr. 2013. Phosphorus availability and rootstock affect copper-induced damage to the root ultra-structure of citrus. Environmental and Experimental Botany 95:25–33. doi:10.1016/j.envexpbot.2013.07.004.
  • Zhou, G. F., A. P. Shu, Y. Z. Liu, Q. J. Wei, J. Han, and M. Z. Islam. 2014. The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 28:295–307. doi:10.1007/s00468-013-0949-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.