622
Views
3
CrossRef citations to date
0
Altmetric
Articles

Transferability and Polymorphism Between Group 7 Chromosome Specific Simple Sequence Repeat (SSR) Markers of Bread Wheat and Its Related Non-Progenitor Aegilops Species

, , , , , , & show all
Pages 433-446 | Received 30 Dec 2015, Accepted 31 Mar 2016, Published online: 24 Jun 2016

References

  • Aversano, R., M. R. Ercolano, I. Caruso, C. Fasano, D. Rosellini, and D. Carputo. 2012. Molecular tools for exploring polyploid genomes in plants. International Journal of Molecular Sciences 13:10316–35. doi:10.3390/ijms130810316.
  • Borner, A., E. Schumann, A. Furste, H. Coster, B. Leithold, S. Roder, and E. Weber. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics 105:921–36. doi:10.1007/s00122-002-0994-1.
  • Chen, H., and P. C. Boutros. 2011. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35. doi:10.1186/1471-2105-12-35.
  • Cuadrado, A., M. Cardoso, and N. Jouve. 2008. Physical organisation of simple sequence repeats (SSRs) in Triticeae: Structural, functional and evolutionary implications. Cytogenetic and Genome Research 120:210–19. doi:10.1159/000121069.
  • Elkot, A. F. A., P. Chhuneja, S. Kaur, M. Saluja, B. Keller, and K. Singh. 2015. Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS One 10:e0128297. doi:10.1371/journal.pone.0128297.
  • Guyomarc’h, H., P. Sourdille, G. Charmet, J. Edwards, and M. Bernard. 2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. TAG Theoretical and Applied Genetics 104:1164–72. doi:10.1007/s00122-001-0827-7.
  • Jorhem, L., and J. Engman. 2000. Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL collaborative study. Journal AOAC International 83:1189–203. PubMed PMID: 11048860.
  • Khlestkina, E. K., E. G. Pestsova, E. Salina, M. S. Roder, V. S. Arbuzova, S. F. Koval, and A. Borner. 2002. Genetic mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cellular & Molecular Biology Letters 7:795–802.
  • Kuleung, C., P. S. Baenziger, and I. Dweikat. 2004. Transferability of SSR markers among wheat, rye, and triticale. TAG Theoretical and Applied Genetics 108:1147–50. doi:10.1007/s00122-003-1532-5.
  • Li, L.-F., B. Liu, K. M. Olsen, and J. F. Wendel. 2015. A re-evaluation of the homoploid hybrid origin of Aegilops tauschii, the donor of the wheat D-subgenome. The New Phytologist 13:10316–35. doi:10.1111/nph.13294.
  • Marcussen, T., S. R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, J. Ks, W. Bbh, B. Steuernagel, M. Kfx, and O. Oa,, . 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(80). 10.1126/science.1250092
  • Middleton, C. P., N. Senerchia, N. Stein, E. D. Akhunov, B. Keller, T. Wicker, and B. Kilian. 2014. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One 9:e85761. doi:10.1371/journal.pone.0085761.
  • Molnar, I., H. Simkova, M. Leverington-Waite, R. Goram, A. Cseh, J. Vrana, A. Farkas, J. Dolezel, M. Molnar-Lang, and S. Griffiths. 2013. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 8:e70844. doi:10.1371/journal.pone.0070844.
  • Murray, M. G., and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321–25. doi:10.1093/nar/8.19.4321.
  • Naghavi, M. R., M. J. Aghaei, A. R. Taleei, M. Omidi, J. Mozafari, and M. E. Hassani. 2009. Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genetics Resources Crop Evolution 56:499–506. doi:10.1007/s10722-008-9381-3.
  • Neelam, K., N. Rawat, V. Tiwari, S. Kumar, P. Chhuneja, K. Singh, G. Randhawa, and H. Dhaliwal. 2011. Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Molecular Breeding 28:623–34. doi:10.1007/s11032-010-9514-1.
  • Pestsova, E., M. W. Ganal, and M. S. Roder. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–97. doi:10.1139/g00-042.
  • Petersen, S., J. H. Lyerly, M. L. Worthington, W. R. Parks, C. Cowger, D. S. Marshall, G. Brown-Guedira, and J. P. Murphy. 2015. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theoretical and Applied Genetics 128:303–12. doi:10.1007/s00122-014-2430-8.
  • Quarrie, S., S. Pekic Quarrie, R. Radosevic, D. Rancic, A. Kaminska, J. D. Barnes, M. Leverington, C. Ceoloni, and D. Dodig. 2006. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. Journal of Experimental Botany 57:2627–37. doi:10.1093/jxb/erl026.
  • Rawat, N., K. Neelam, V. K. Tiwari, G. S. Randhawa, B. Friebe, B. S. Gill, and H. S. Dhaliwal. 2011. Development and molecular characterization of wheat-Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54:943–53. doi:10.1139/g11-059.
  • Rawat, N., V. Tiwari, N. Singh, G. Randhawa, K. Singh, P. Chhuneja, and H. Dhaliwal. 2009. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetics Resources Crop Evolution 56:53–64. doi:10.1007/s10722-008-9344-8.
  • Roder, M. S., V. Korzun, K. Wendehake, J. Plaschke, M. H. Tixier, P. Leroy, and M. W. Ganal. 1998. A microsatellite map of wheat. Genetics 149:2007–23.
  • Rubiales, D., A. Moral, and A. Martín. 2001. Chromosome location of resistance to septoria leaf blotch and common bunt in wheat-barley addition lines. Euphytica 122:369–72. doi:10.1023/A:1012952819255.
  • Sambrook, J., and D. W. Russell. 2001. Molecular Cloning 1, Vol. 1, 4th ed. NY, United States: Cold Spring Harbor Laboratory Press.
  • Sandve, S. R., T. Marcussen, K. Mayer, K. S. Jakobsen, L. Heier, B. Steuernagel, B. B. H. Wulff, and O. A. Olsen. 2015. Chloroplast phylogeny of Triticum/Aegilops species is not incongruent with an ancient homoploid hybrid origin of the ancestor of the bread wheat D-genome. The New Phytologist 208:9–10. doi:10.1111/nph.13487.
  • Schneider, A., I. Molnár, and M. Molnár-Láng. 2010. Selection of U and M genome-specific wheat SSR markers using wheat–Aegilops biuncialis and wheat–Ae. geniculata addition lines. Euphytica 175:357–64. doi:10.1007/s10681-010-0180-5.
  • Sheikh, I., P. Sharma, S. Verma, S. Kumar, S. Malik, P. Mathpal, U. Kumar, D. Singh, S. Kumar, V. Chugh, and H. Dhaliwal. 2016. Characterization of interspecific hybrids of Triticum aestivum x Aegilops sp. without 5B chromosome for induced homoeologous pairing. Journal Plant Biochemical Biotechnology 25:117–20. doi:10.1007/s13562-015-0307-9.
  • Somers, D. J., P. Isaac, and K. Edwards. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 109:1105–14. doi:10.1007/s00122-004-1740-7.
  • Sosnowski, O., A. Charcosset, and J. Joets. 2012. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–83. doi:10.1093/bioinformatics/bts313.
  • Tiwari, V. K., N. Rawat, P. Chhuneja, K. Neelam, R. Aggarwal, G. S. Randhawa, H. S. Dhaliwal, B. Keller, and K. Singh. 2009. Mapping of quantitative trait Loci for grain iron and zinc concentration in diploid A genome wheat. Journal of Heredity 100:771–76. doi:10.1093/jhered/esp030.
  • Tiwari, V. K., N. Rawat, K. Neelam, S. Kumar, G. S. Randhawa, and H. S. Dhaliwal. 2010. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theoretical and Applied Genetics 121:259–69. doi:10.1007/s00122-010-1307-8.
  • Verma, S. K., S. Kumar, I. Sheikh, S. Malik, P. Mathpal, V. Chugh, S. Kumar, R. Prasad, and H. S. Dhaliwal. 2016a. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. International Journal of Radiation Biology 92:132–39. doi:10.3109/09553002.2016.1135263.
  • Verma, S. K., Kumar, S., Sheikh, I., Sharma, P., Mathpal, P., Malik, S., Kundu, P., Awasthi, A., Kumar, S., R. Prasad, and H. S. Dhaliwal. 2016b. Induced Homoeologous Pairing for Transfer of Useful Variability for High Grain Fe and Zn from Aegilops kotschyi into Wheat. Plant Molecular Biology Reporter 1–12. doi:10.1007/s11105-016-0989-8.
  • Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93:77–78. doi:10.1093/jhered/93.1.77.
  • Waines, J. G., and B. L. Johnson. 1972. Genetic differences between Aegilops longissima, A. sharonensis and A. bicornis. Canadian Journal of Genetics and Cytology 14:411–15. doi:10.1139/g72-051.
  • Wulff, B. B. H., and M. J. Moscou. 2014. Strategies for transferring resistance into wheat: From wide crosses to GM cassettes. Frontiers Plant Sciences 5:692. doi:10.3389/fpls.2014.00692.
  • Zhan, H., G. Li, X. Zhang, X. Li, H. Guo, W. Gong, J. Jia, L. Qiao, Y. Ren, Z. Yang, and Z. Chang. 2014. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS One 9:e113455. doi:10.1371/journal.pone.0113455.
  • Zhang, H., S. M. Reader, X. Liu, J. Z. Jia, M. D. Gale, and K. M. Devos. 2001. Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. TAG Theoretical and Applied Genetics 103:518–25. doi:10.1007/s001220100656.
  • Zhao, L., H. J. Liu, C. X. Zhang, Q. Y. Wang, and X. H. Li. 2015. Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Genetics and Molecular Research: GMR 14:961–70. doi:10.4238/2015.February.3.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.