241
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

High-temperature-tolerant mungbean (Vigna radiata L.) lines produce better yields when exposed to higher CO2 levels

, , , , &
Pages 418-430 | Received 09 Aug 2017, Accepted 06 Feb 2018, Published online: 15 Feb 2018

References

  • Awasthi, R., N. Kaushal, V. Vadez, N. C. Turner, J. Berger, K. H. M. Siddique, and H. Nayyar. 2014. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology 41:1148–67. doi:10.1071/FP13340.
  • Bhardwaj, M. L. 2012. Challenges and opportunities of vegetable cultivation under changing climate scenario. A training manual on vegetable production under changing climate scenario, 13–18. India: Dr YS Parmar University of Horticulture and Forestry, Nauni-173 230 Solan.
  • Bindumadhava, H., R. M. Nair, H. Nayyar, J. J. Riley, and W. Easdown. 2017. Mungbean production under a changing climate – insights from growth physiology. XIII agriculture science congress – special issue. Mysore Journal Agri Sciences 51 (1):21–27.
  • Deryng, D., J. Elliott, F. Christian, G. Müller, A. M. Thomas, K. J. Boote, D. Conway, A. C. Ruane, G. Dieter, W. J. James, W. K. Nikolay, O. Stefan, S. Sibyll, S. Erwin, H. Yang, and R. Cynthia. 2016. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change News Report 6:786–90.
  • Gaur, P. M., S. Samineni, L. Krishnamurthy, S. Kumar, M. E. Ghanem, S. Beeb, I. Rao, S. K. Chaturvdei, P. S. Basu, H. Nayyar, V. Jayalakshmi, A. Babbar, and R. K. Varsgney. 2015. High temperature tolerance in grain legumes. Legume Perspectives 7:23–24.
  • Hanumantharao, B., R. M. Nair, and H. Nayyar. 2016. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science 7:1–20. doi:10.3389/fpls.2016.00957.
  • Idso, S. B., B. A. Kimball, M. G. Anderson, and J. R. Mauney. 1987. Effect of elevated atmospheric carbon dioxide enrichment on plant growth; the interactive role of air temperature. Agricultural Ecosystems and Environment 20:1–10. doi:10.1016/0167-8809(87)90023-5.
  • IPCC, 2014. Climate change 2014 – impacts, adaptation, and vulnerability. Contribution of Working Group II to Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Johkan, M., M. Oda, T. Maruo, and Y. Shinohara. 2011. Crop production and global warming. Global warming impacts – case studies on the economy, human health, and on urban and natural environments, ed. S. Casalegno. 139–52. INTECH. http://www.intechopen.com/books/global-warming-impactscase-studies-on-the-economy-human-health-andon-urban-andnatural-environments/crop-production-and-global-warming.
  • Kaur, R., T. S. Bains, H. Bindumadhava, and H. Nayyar. 2015. Responses of mungbean (Vigna radiata L.) genotypes to heat stress: Effects on reproductive biology, leaf function and yield traits. Scientia Horticulturae 197:527–41. doi:10.1016/j.scienta.2015.10.015.
  • Kaushal, N., R. Awasthi, K. Gupta, P. Gaur, K. H. M. Siddique, and H. Nayyar. 2013. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology 40:1334–49. doi:10.1071/FP13082.
  • Krishna, J., S. V. N. B. Rajeev, D. Maduraimuthu, R. Gamuyao, P. V. Vara Prasad, and P. Q. Craufurd. 2016. Implications of high temperature and elevated CO2 on flowering time in plants. Frontiers Plant Sciences 7:1–11.
  • Kumar, S., P. Thakur, N. Kaushal, J. A. Malik, P. Gaur, and H. Nayyar. 2013. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archives of Agronomy and Soil Science 59:823–43. doi:10.1080/03650340.2012.683424.
  • Lobell, D. B., and S. M. Gourdji. 2012. The influence of climate change on global crop productivity. Plant Physiology 160:1686–97. doi:10.1104/pp.112.208298.
  • Merewitz, E. B., H. Du, W. Yu, Y. Liu, Y. Gianfagun, and B. Huang. 2012. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolic accumulation. Journal Expt Botanic 63:1315–28. doi:10.1093/jxb/err372.
  • Peet, M. M., and D. W. Wolfe. 2000. Crop ecosystem responses to climate change: Vegetable crops. In CAB International. Climate change and global crop productivity, Eds K. R. Reddy, and H. F. Hodges, 213–44. Wallingford: CABI.
  • Rao, B. H., T. G. Prasad, and N. Sharma. 2011. Plant isotope signatures: For plant traits, 1–172. Saarbrucken: LAP Lambert Academic Publications, Germany.
  • Rogers, H. H., and R. C. Dahlman. 1993. Crop responses to CO2 enrichment. Vegetatio 104/105:117–31. doi:10.1007/BF00048148.
  • Sharma, L., M. Priya, H. Bindumadhava, R. M. Nair, and H. Nayyar. 2016. Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Scientia Horticulturae 213:379–91. doi:10.1016/j.scienta.2016.10.033.
  • Sheshshayee, M. S., B. T. Krishnaprasad, K. N. Nataraj, A. G. Shankar, T. G. Prasad, and M. Udayakumar. 1996. Ratio of intercellular CO2 concentration to stomatal conductance is a reflection of mesophyll efficiency. Current Science 70 (7):672–75.
  • Sigut, L., H. Petra, L. Ova´, S. Klem, C. Mirka., V. Carlo, M. Michal, S. Vladimı´R, and O. Urban. 2015. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature? Annals of Botany 43:1–11.
  • Taiz, L., and E. Zeiger. 2015. Plant physiology, 6th ed. Sunderland, MA, USA: Sinauer Associates Press.
  • Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61:199–223. doi:10.1016/j.envexpbot.2007.05.011.
  • Wang, D., S. A. Heckathorn, X. Wang, and S. M. Philpott. 2012. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13. doi:10.1007/s00442-011-2172-0.
  • Yu, J., H. Du, M. Xu, and B. Huang. 2012. Metabolic responses to heat stress under elevated atmospheric CO2 concentrations in a cool-season grass species. Journal Amer Social Hort Sciences 137 (4):221–28.
  • Zobayed, S. M. A., F. Afreen, and T. Kozai. 2005. Temperature stress can alter the photosynthesis efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiology and Biochemistry : PPB / Societe Francaise De Physiologie Vegetale 43:977–84. doi:10.1016/j.plaphy.2005.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.