2,182
Views
77
CrossRef citations to date
0
Altmetric
Review Article

A Review on Fuel Ethanol Production From Lignocellulosic Biomass

, , &

References

  • Alkasrawi, M., T. Eriksson, J. Borjesson, A. Wingren, M. Galbe, F. Tjerneld, and G. Zacchi. 2003. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme and Microbial Technology 33:71–8.
  • Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro. 2010. Enzymatic delignification of woody and nonwoody feedstock. Bioresource Technology 101:4851–61.
  • Alvo, P., and K. Belkacemi. (1997). Process for enzymatically converting a plant biomass. Bioresource Technology 61:185–98.
  • Asgher, M., and H. M. N. Iqbal. 2011. Characterization of a novelmanganese peroxidase purified from solid state culture of Trametes versicolor IBL-04. BioRes 6:4317–30.
  • Asgher, M., F. Bashir, and H. M. N. Iqbal. 2013. A comprehensive ligninolytic pre-treatment approach from lignocellulose green biotechnologyto produce bio-ethanol. Chemcial Engineering Research and Design 92:1571–78.
  • Ballesteros, I., J. M. Oliva, F. Saez, and F. M. Ballesteros. 2001. Ethanol production from lignocellulosic byproducts of olive oil extraction. Applied Biochemistry and Biotechnology 91–93:237–52.
  • Brandberg, T., N. Sanandaji, L. Gustafsson, and C. J. Franzen. 2005. Inhibitor tolerance and flocculation of a yeast strain suitable for second-generation bioethanol production. Biotechnology Progress 21:1093–101.
  • Brijwani, K., H. S. Oberoi, and P. V. Vadlani. 2010. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry 45:120–8.
  • Cantarella, M., F. Alfani, L. Cantarella, A. Gallifuoco, and A. Saporosi. 2001. Biosacchrification for cellulosic biomass in immiscible solvent water mixture. Journal of Molecular Catalysis B: Enzymatic 11:867–75.
  • Chandra, R, H. Takeuchi, and T. Hasegawa. 2012. Methane production from lignocellulosic agriculture crop waste: A review in context to second generation of biofuels production. Renewable and Sustainable Energy Reviews 16:1462–76.
  • Chong, R., A. Ramırez, J. A. Garrote, and G. M. Vazquez. 2004. Hydrolysis of sugarcane bagasse using nitric acid: A kinetic assessment. Journal of Food Engineering 61(2):143–52.
  • Chovau, S., S. Degrauwe, and B. V. Bruggen. 2013. Critical analysis for techno-economic estimate for the production cost of lignocellulosic bioethanol production. Renewable and Sustainable Energy Reviews 26:307–21.
  • Claassen, P., A. M. Van Lier, J. B. Lopez, A. M. Contreras, E. Van Niel, W. J. Sijtsma, L. Stams, A. J. M. de Vries, and S. S. Weusthuis. 1999. Utilization of biomass for supply of energy carriers. Applied Microbiology and Biotechnology 52:741–55.
  • Cuzens, J.C., and J. R. Miller. 1997. Acid hydrolysis of bagasse for ethanol production. Renewable Energy 10:285–90.
  • Demirbaş, A. 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combus. Sci. 30:219–30.
  • Demirbas, A. 2007. Recent development in biodiesel fuels. International Journal of Green Energy 4:1.
  • Dias, M. O. S., M. P. Cunhaa, C. D. F. Jesusa, G. J. M. Rocha, J. G. C. Pradellaa, C. E.V. Rossella, R. M. Filhoa, and A. Bonomi. 2009. Second generation ethanol in Brazil: Can it compete with electricity production? Bioresource Technology 102: 8964–8971.
  • Dias, M.O., T. L. Junqueira, O. Cavalett, M. P. Cunha, et al. 2013.Cogeneration in integrated first and second generationethanol from sugarcane. Chem. Eng. Res. Des. 91:1411–17.
  • Farone, W. A., and J. E. Cuzens. 1996. Method of strong acid hydrolysis. Patent WO9640970.
  • Feria, M., J. A. Rivera, R. Ruiz, E. Grandal, J. C. G. Domínguez, A. Pérez, and F. López. 2011. Energetic characterization of lignocellulosic biomass from southwest Spain. International Journal of Green Energy 8:6.
  • Feng, X., S. Yong-Cheng, and W. Donghai. 2013. X-ray scattering studies of lignocellulosic biomass: A review. Carbohydrate Polymers 94:904–17.
  • Foody, B., J. S. Tolan, J. D. Bernstein, and P. Sr. Foody. 2000. An assessment of the opportunities and challenges of a bio-based economy for agriculture and food research in Canada. Patent US6090595.
  • Ghosh, P., and T. K. Ghose. 2003. Microorganism in sustainable agriculture and biotechnology. Advances in Biochemical Engineering/Biotechnology 85:1–27.
  • Gong, C. S., N. J. Cao, J. Du, and G. T. Tsao. 1999. Ethanol production from renewable resources. Advances in Biochemical Engineering/Biotechnology 65:207–41.
  • Grous, W. R., A. O. Converse, and H. E. Grethlein. 1986. Biofuels from agriculture waste and byproducts. Enzyme and Microbial Technology 8:274–80.
  • Hamelinck, C. N., G. Van Hooijdonk, and A. P. C. Faaij. 2005. Sugarcane ethanol: Contribution to climate change mitigation and adaption strategies for global change. Biomass and Bioenergy 28:384–410.
  • Hari Krishna, S., K. Prasanthi, G. Chowdary, and C. Ayyanna. 1998. Simultaneous saccharification and fermentation of pretreated sugarcane leaves to ethanol. Process Biochemistry 33(8):825–30.
  • Ishizaw, C. I., M. F. Davis, D. F. Schell, and D. K. Hohnson. 2007. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. Journal of Agriculture Food Chemistry 55:2575–81.
  • Itoh, H., W. M. Honda, and Y. T. Kuwatanabe. 2003. Helicobacter pyrolli: Past, present and future. Journal of Brazillian Chemical Society 103:273–80.
  • Julián, A., J. M. Quintero, and A. Cardona Carlos. 2013. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Bioresource Technology 139:300–07.
  • Kadar, Zs., Zs. Szengyel, and K. Reczey. (2004). Simultaneous and fermentation of industrial waste for ethanol production. Industrial Crops and Products 20:103–10.
  • Kanaujia, P. K., Y. K. Sharama, U. C. Agrawal, and M. O. Garg. 2013. Analytical approaches to characterizing pyrolysis oil from biomass. Trends in Analytical Chemistry 42:125–36.
  • Kaur, U., H. S. Oberoi, V. K. Bhargav, and R. S. Shivappa. 2012. Ethanol production from alkali and ozone treated cotton stalk using thermotolraent pichia kudarvzevii HOP-1. Industrial Crops and Products 33:219–26.
  • Kaur, B., M. Sharma, R. Soni, H. S. Oberoi, and B. S. Chadha. 2013. Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Applied Biochemistry and Biotechnology 163:577–91.
  • Khiyami, M. A., A. L. Pometto, and R. C. Brown. 2005. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. Journal of Agricultural and Food Chemistry 53:2978–87.
  • Koçar, G., and N. Civas. 2013. An overview of biofuels from energy crops: Current status and future prospects. Renewable and Sustainable Energy Reviews 28:900–16.
  • Kooster, A. M. J., N. S. Mosier, E. L. Scott, and J. P. M. Sander. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal 43:92–7.
  • Kumar, P., M. Diane Barrett, J. Michael Delwiche, and S. Pieter. 2009. Method for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production. Industrial & Engineering Chemistry Research 48:3713–29.
  • Lei, W., L. Jade, and J. Murphy Richard. 2013. Environmental sustainability of bioethanol production from wheat straw in the UK. Renewable and Sustainable Energy Reviews 28: 715–25.
  • Li, C. K., B. C. Manisseri, R. S. Arora, H. V. Cheller, M. Auer, K. P. Vogel, B. A. Simmons, and S. Singh. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101:4900–6.
  • Limayem, A., and C. Ricke Steven. 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects review. Progress in Energy and Combustion Science 38:449–67.
  • Lin, Y., and S. Tanaka. 2006. Ethanol fermentation from biomass resources: Curent state and prospects. Applied Microbiology and Biotechnology 69:627–42.
  • Lynd, L. R. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment 21:403–65.
  • Lynd, L. R. 2010. Bioenergy: In search of clarity. Energy & Environmental Science 3:1150–2.
  • Lynd, L. R., C. E. Wyman, and T. U. Gerngross. 1999. Biocommodity engineering. Biotechnology Progress 15:777–93.
  • McMillan, J. D. (1997). Bioethanol production: Status and prospectus. Renewable Energy 10:295–302.
  • Mood, S. H., A. H. Golfeshan, M. Tabatabaei, G. S. Jouzani, N. Gholam, M. H. Gholami, and M. Ardjmand. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews 27:77–93.
  • Moon, H. C., I. S. Song, and D. H. Kim. (2010). Concentrated acid impregnation, hydrolysis, and fermentation of reed to ethanol. International Journal of Green Energy 7:5.
  • Murray, D. 2005, July. Eco- Economy Updates. Earth Policy Institute. Available at http://earth-policy.org/Updates/2005/Update49.htm (accessed February 20, 2005).
  • Nakamura, Y., T. Sawada, and E. Inoue. 2001. Enhanced ethanol production from enzymatically treated steam-exploded rice straw using extractive fermentation. Journal of Chemical Technology and Biotechnology 76:879–84.
  • Negro, M. J., P. Manzanares, I. Ballesteros, and J. M. Oliva. 2003. Hydrothermal pretreatment conditions to enhanced ethanol production from poplar biomass. Applied Biochemistry and Biotechnology 105–108:87–100.
  • Oberoi, H. S., N. Babbar, S. S. Dhaliwal, U. Kaur, B. S. Chadha, and V. K. Bhargav. 2012a. Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolraent pichia kudariavzavii. Indian Journal of Biotechnology 39:557–66.
  • Oberoi, H. S., S. K. Sandhu, and P. V. Vadlani. 2012b. Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food and Biproducts Processing 90:257–65.
  • Oberoi, H. S., P. V. Vadlani, K. Brijwani, V. K. Bhargav, and R. T. Patil. 2010. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC-13803. Process Biochemistry 45:1299–306.
  • Oberoi, H. S., P. V. Vadlani, A. Nanjundaswamya, S. K. Bansal, and N. Babbar. 2011. Enhanced ethanol production from Kinnow mandarin (Citrus reticula) waste via a statistically optimized simultaneous and fermentation process. Bioresource Technology 102:1593–601.
  • Oberoi, H. S., P. V. Vadlani, L. Saida, S. Bansal, and J. D. Hughes. 2011. Ethanol production from banana peel using statistically optimized simultaneous saccharification and fermentation process. Waste Managemet 15:1576–84.
  • Ogier, J. C. 1999. Ethanol production from lignocellulosic biomass. Oil Gas Science Technology 54:67–94.
  • Okano, K., N. Ohkoshi, A. Nishiyama, T. Usagawa, and M. Kitagawa. 2009. Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing with the white-rot fungus Ceriporiopsis subvermispora. Animal Feed Science and Technology 152:278–85.
  • Olsson, L., and B. Hahn-Hagerdal. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology 18:312–31.
  • Osacar, J. S., and C. A. Cardona. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99:5270–95.
  • Palmqvist, E., and B. Hahn-Hagerdal. 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology 74:17–24.
  • Pandey, A., N. Srivastava, and P. Sinha. 2011. Optimization of hydrogen production by Rhodobacter sphroides NMBL-01. Biomass and Bioenergy 37:251–256.
  • Papatheofanous, M. G., E. Billa, D. P. Koullas, B. Monties, and E. G. Koukios. 1998. Optimizing multisteps mechanical-chemical fractionation of wheat straw components. Industrial Crops and Products 7: 249–56.
  • Persson, P., J. Andersson, L. Gorton, S. Larsson, N. O. Nilvebrant, and L. F. Jonsson. 2002. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. Journal of Agricultural and Food Chemistry 50:5318–25.
  • Rass-Hansen, J., H. Falsig, B. Jorgensen, and C. H. Christensen. 2007. Bioethanol: Fuel or feedstock?. Journal of Chemical Technology and Biotechnology 82:329–33.
  • Rawat, R., B. K. Kumbhar, and L. Tiwari. 2013. Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Industrial Crops and Products 44:220–26.
  • Rodriguez-Chong, A., J. A. Ramírez, G. Garrote, and M. Vázquez. 2004. Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assessment. Journal of Food Engineering 61:143–52.
  • Saha, B. C., and M. A. Cotta. 2007. Enzymatic saccharification andfermentation of alkaline peroxide pretreated rice hulls toethanol. Enzyme Microb. Technol. 41:528–32.
  • Saha, B. C., L. B. Iten, M. A. Cotta, and Y. V. Wu. 2005a. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress 21:816–22.
  • Saha, B. C., L. B. Iten, M. A. Cotta, and Y. V. Wu. 2005b. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry 40:3693–700.
  • Sanchez, Ó. J., and Carlos A. Cardona. 2008.Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99:5270–95.
  • Sandhu, S. K., H. S. Oberoi, S. S. Dhaliwal, and N. Babbar. 2012. Ethanol production from Kinnow mandarin (Citrus reticulate) peels via simultaneous and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant pichia kudariavzevii strain. Annals of Microbiology 62:655–66.
  • Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37:19–27.
  • Schell, D. J., J. Farmer, M. Newman, and J. D. McMillan. 2003. Dilutesulfuric acid pre-treatment of corn stover in pilot-scale reactor. Investigation of yields, kinetics, and enzymatic digestibilities of solids. Applied Biochemistry and Biotechnology 105:69–85.
  • Serrano-Ruiz, J. C., and J. A. Dumesic. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci. 4:83–99.
  • Shahbazi, A., Y. Li, and M. R. Mims. 2005. Application of sequential aqueous steam treatments to the fractionation of softwood. Applied Biochemistry and Biotechnology 121–124:973–87.
  • Sharma, M., R. Soni, A. Nazir, H. S. Oberoi, and B. S. Chadha. 2011. Evaluation of glycosyl hydrolyses in the secretome of Aspergillus fumigatus and sacchrification of alkali-treated rice straw. Applied Biochemistry and Biotechnology 163:577–91.
  • Singh, L. K., C. B. Majumder, and S. Ghosh. 2012. Bioconversion of hemicellulosic fraction of perennial kans grass (Saccharum spontaneum) biomass to ethanol by Pichia stipitis: A kinetic study. International Journal of Green Energy 9:5.
  • Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2003. Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy 24:475–86.
  • Stenberg, K., M. Bollok, K. Reczey, M. Galbe, and G. Zacchi. 2000. Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnology and Bioengineering 68(2):204–10.
  • Sun, Y., and J. Cheng. 2002. Hydrolysis of lignocellulosic materials: A review. Bioresource Technology 83:1–11.
  • Tengerdy, R. P., and G. Szakacs. 2003. Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal 13:169–79.
  • Varga, E., H. B. Klinkle, K. Reczey, and A. B. Thom. 2004. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanolsen. Biotechnology and Bioengineering 88(5):567–74.
  • Vidal, B. C., B. S. Dien, K. C. Ting, and V. Singh. 2011. Influence of feedstock particle size on lignocellulose conversion. Applied Biochemistry and Biotechnology 164:1405–21.
  • Wooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski, A. Gálvez. 1999. Lignocellulosic biomass to ethanol process design and eco-nomics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis. Current and futuristic scenarios. Technical Report NREL/ TP-580-26157. Golden, CO: National Renewable Energy Laboratory.
  • Yang, B., and C. E. Wyman. 2008. Pretreatment: The key to unlocking low cost cellulosic ethanol. Biofuels, Bioproducts and Biorefinin 2:26–40.
  • Yu, Z., and Zhang, H. 2003. Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass and Bioenergy. 24:257–62.
  • Zaldivar, J., A. Martinez, and L. O. Ingram. 1999. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering 65:24–33.
  • Zaldivar, J., A. Martinez, and L. O. Ingram. 2000. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering 68: 524–30.
  • Zhang, B. S. 2006. Process for preparing fuel ethanol by using straw fiber materials. Patent CN1880416.
  • Zhang, Q. P. Zhang, and Z. J. Pei, D Wang. 2013. Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature. Renewable Energy 60:127–36.
  • Zhang, Y-H. P. 2011. Hydrogen production from carbohydrates: A mini-review. ACS Symp. Ser. 1067:203–16.
  • Zhang, Y-H. P., and J. R. Mielenz. 2011. Renewable hydrogen carrier – carbohydrate: Constructing the carbon-neutral carbohydrate economy. Energies 4:254–75.
  • Zhang, Y.-H. P., and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Non-complexed cellulose systems. Biotechnology and Bioengineering 8(7):797–824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.