762
Views
13
CrossRef citations to date
0
Altmetric
Review Article

Exploiting Microalgae and Macroalgae for Production of Biofuels and Biosequestration of Carbon Dioxide—A Review

, &

References

  • Afify, A. E. M. R., E. A. Shalaby, and S. M. M. Shanab. 2010. Enhancement of biodiesel production from different species of algae. Grasa Y Aceites 61:416–22.
  • Aflalo, C. 2010. Insight in microalgal carbon flux under growth and stress conditions by biomass analysis. Proceedings-14th International Conference on Cell and Molecular Biology of Chlamydomonas, Wheaton College, 26 E. Main Street, Norton, Massachussetts 02766, June 6–10.
  • Ajiwe, V. I. E., V. O. Ajibola, and C. M. A. O. Martins. 2003. Biodiesel fuels from Palm oil, palm oil methyl ester and ester-diesel blends. Bulletin of Chemical Society of Ethiopia 17:19–26.
  • Akin, D. E. and R. Benner. 1988. Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied Environmental Microbiology 54:1117–25.
  • Andersen, T. and F. Ø. Andersen. 2006. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquatic Botany 84:267–71.
  • Andrade, M. R. and J. A. V. Costa. 2007. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–4.
  • Aresta, M., A. Dibenedetto, M. Carone, C. Teresa, and C. Fragale. 2005. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermophilic liquefaction. Environmental Chemistry Letters 3:136–9.
  • Atsumi, S., W. Higashide, and J. C. Liao. 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology 27:1177–80.
  • Balasundaram, R., K. Gadgil, B. K. Behera, and D. K. Sharma. 2007. Photo biological production of hydrogen from Spirulina for fueling the fuel cells. Energy Sources 29:761–7.
  • Banerjee, K., R. Ghosh, S. Homechaudhuri, and A. Mitra. 2009. Biochemical composition of marine macroalgae from gangetic delta at the apex of Bay of Bengal. African Journal of Basic and Applied Science I 5–6:96–104.
  • Bastianoni, S., F. Coppola, E. Tiezzi, A. Calacevich, F. Borghini, and S. Ficardi. 2008. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock. Biomass and Bioenergy 32:619–28.
  • Becker, E. W. 1995. Microalgae Biotechnology and Microbiology. Cambridge, UK: Cambridge University Press, p. 95.
  • Blackburn, S. 2010. Algal strains from the biodiversity of Australia. Asia Ocedanic Algae Innovation Summit, Tsukuba, Japan, December 12–14.
  • Bligh, E. G. and W. J. Dyer. 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–7.
  • Borkenstein, C. G., J. Knoblechner, H. Frühwirth, and M. Schagerl. 2011. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. Journal of Applied Phycology 23:131–5.
  • Borowitzka, M. A. 1986. Microalgae as sources of fine chemicals. Current Microbiology 3:372–5.
  • Borowitzka, M. A. 1988. Microalgae as sources of essential fatty acids. Australian Journal of Biotechnology 1:58–62.
  • Borowitzka, M. A. 1993. “Large-scale algal culture systems: The next generation.” In 11th Australian Biotechnology Conference, ed. J. Sargeant, S. Washer, M. Jones, and M. Borowitzka. Perth: Australian Biotechnology Association, pp. 61–62.
  • Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 70:313–21.
  • Brennan, L. and P. Owende. 2010. Biofuels from microalgae- A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14:557–77.
  • Burton, T., H. Lyons, Y. Lerat, M. Stanley, and M. B. A. Rasmussen. 2009. Review of the potential of marine algae as a source of biofuel in Ireland. Report prepared for sustainable energy in Ireland.
  • Canto de Loura, I., J. P. Dubacq, and J. C. Thomas. 1987. The effects of nitrogen deficiency on pigments and lipids of cyanobacteria. Plant Physiology 83:838–43.
  • Chen, M., H. Tang, H. Ma, T. C. Holland, K. Y. Simon Ng, and S. O. Salley. 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology 102:1649–55.
  • Chinnasamy, S., B. Ramakrishnan, A. Bhatnagar, and K. C. Das. 2009. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International Journal of Molecular Science 10:518–32.
  • Chisholm, S. W. 2000. Stirring times in the southern ocean. Nature 407:685–7.
  • Chisti, Y. 2007. Biodiesel from algae. Biotechnology Advances 25:294–306.
  • Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26:126–31.
  • Chisti, Y. and M. Moo-Young. 1986. Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology 8:184–204.
  • Chiu, S.-Y., C.-Y. Kao, C.-H. Chen, T.-C. Kuan, S.-C. Ong, and C.-S. Lin. 2008. Reduction of CO by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology 99:3389–96.
  • Chiu, S. Y., C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen, and C. S. Lin. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology 100:833–8.
  • Choi, G. G., B. H. Kim, C. Y. Ahn, and H. M. Oh. 2011. Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii. Journal of Applied Phycology 23:1031–7.
  • Cobelas, L. and J. Z. Lechado. 1989. Lipids in microalgae- A review, I. Biochemistry Grasas y Asceites 40:118–45.
  • Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. Del Borghi. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering Process: Process Intensification 48:1146–51.
  • Cosa, S., L. V. Mabinya, A. O. Olaniran, O. O. Okoh, K. Bernard, S. Deyzel, and A. I. Okoh. 2011. Bioflocculant Production by Virgibacillus sp. Rob Isolated from the Bottom Sediment of Algoa Bay in the Eastern Cape, South Africa. Molecules 16:2431–42.
  • Courchesne, N. M. D., A. Parisien, B. Wang, and C. Q. Lan. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology 141:31–41.
  • Damiani, M. C., C. A. Popovich, D. Constenla, and P. I. Leonardi. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as biodiesel feedstock. Bioresource Technology 101:3801–7.
  • Darley, W. M. 1982. Algal Biology: A Physiological Approach, 1st ed. Oxford, UK: Blackwell Scientific Publications.
  • Da Silva, A. F., S. O. Lourenc, and R. M. Chaloub. 2009. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquatic Botany 91:291–7.
  • Dayananda, C., R. Sarada, V. Kumar, and G. A. Ravishankar. 2006. Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electronic Journal of Biotechnology 10:78–91.
  • Deeba, F., V. Kumar, K. Gautam, R. K. Saxena, and D. K. Sharma. 2012. Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas. Biomass and Bioenergy 40:13–8.
  • Demirbas, A. 2008. Production of biodiesel from algae oils. Energy Sources A 31:163–8.
  • Demirbas, A. 2009. Progress and recent trends in biodiesel fuels. Energy Conversion Management 50:14–34.
  • Demirbas, A. 2010. Use of algae as biofuel sources. Energy Conversion and Management 51:2738–49.
  • Demirbas, M. F. 2011. Biofuels from algae for sustainable development. Applied Energy 88:3473–80.
  • Deng, S. B., R. B. Bai, X. M. Hu, and Q. Luo. 2003. Characteristics of bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology 60:588–93.
  • Devi, P. M., G. V. Subhash, and S. V. Mohan. 2012. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: Effect of nutrient supplementation. Renewable Energy 43:276–83.
  • Doucha, J., F. Straka, and K. Lívanský. 2005. Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology 17:403–12.
  • Dunahay, T. G., E. E. Jarvis, and P. G. Roessler. 1995. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. Journal of Phycology 31:1004–12.
  • Dunahay, T. G., E. E. Jarvis, S. S. Dais, and P. Roessler. 1996. Manipulation of microalgal lipid production using genetic engineering. Applied Biochemistry and Biotechnology 57–58:223–31.
  • Feng, F. Y., W. Yang, G. Z. Jiang, Y. N. Xu, and T. Y. Kuang. 2005. Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochemistry 40:1315–8.
  • Feng, Y., C. Li, and D. Zhang. 2011. Lipid production of Chlorella vulgaris in artificial wastewater medium. Bioresource Technology 102:101–5.
  • Fidalgo, J. P., A. Cid, E. Torres, A. Sukenik, and C. Herrero. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–16.
  • Francisco, E. C., D. B. Neves, E. Jacob-Lopes, and T. T. Franco. 2009. Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology 85:395–403.
  • Fu, X. and B. Han. 2011. Response of cyanobacterial carbon concentrating system to light intensity: A simulated analysis. Chinese Journal of Oceanology and Limnology 28:478–88.
  • Gautam, K., A. Pareek, and D. K. Sharma. 2013. Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. Journal of Bioscience and Bioengineering. 116(5):624–7.
  • Ge, Y., J. Liu, and G. Tian. 2011. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology 102:130–4.
  • Genkov, T., M. Meyer, H. Griffiths, and R. J. Spreitzer. 2010. Functional hybrid Rubisco enzymes with plant small subunits and algal large subunits. Journal of Biological Chemistry 285:19833–41.
  • Giordano, M., J. Beardall, and J. A. Raven. 2005. Concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annual Reviews of Plant Biology 56:99–131.
  • Gouveia, L. and A. C. Oliveira. 2009. Microalgae as a raw material for biofuels production. Journal Industrial Microbiology Biotechnology 36:821–6.
  • Greque de Morais, M. and J. A. V. Costa. 2007. Biofilxation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Biotechnology Journal 129:439–45.
  • Griffith, M. J. and S. T. L. Harrison. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21:493–507.
  • Halterman, S. G. and D. W. Toetz. 1984. Kinetics of nitrate uptake by freshwater algae. Hydrobiologia 114:209–14.
  • Harun, R., M. Singh, G. M. Forde, and M. K. Danquah. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews 14:1037–47.
  • Harwood, J. L. and I. A. Guschina. 2009. The versatility of algae and their lipid metabolism. Biochimie 91:679–84.
  • Heasman, M., J. O.’ Diemar, W. Connor, T. Sushames, L. Foulkes, and J. A. Nell. 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquaculture Research 31:637–59.
  • Heredia-Arroyo, T., W. Wei, and B. Hu. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology 162:1978–95.
  • Ho, S. H., W. M. Chen, and J. S. Chang. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology 101:8725–30.
  • Hopkinson, B. M., C. L. Dupont, A. E. Allen, and F. M. M. Morel. 2011. Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of National Academy of Science of United States of America 108:3830–7.
  • Hu, H. and K. Gao. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters 28:987–92.
  • Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal 54:621–39.
  • IEA Bioenergy. Annual Report 2010.
  • Illman, A. M., A. H. Scragg, and S. W. Shales. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 27:631–5.
  • Jiang, L., S. Luo, X. Fan, Z. Yang, and R. Guo. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy 88:3336–41.
  • Jinkerson, R. E., V. Subramanian, and M. C. Posewitz. 2011. Improving biofuel production in phototrophic microorganisms with systems biology. Biofuels 2:125–44.
  • Johnson, M. B. and Z. Wen. 2009. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy and Fuels 23:5179–83.
  • Karatay, S. E. and G. Donmez. 2011. Microbial oil production from thermophilic cyanobacteria for biodiesel production. Applied Energy 88:3632–5.
  • Kawata, M., M. Nanba, R. Matsukawa, M. Chihara, and I. Karube. 1998. Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Studies in Surface Science and Catalysis 114:637–40.
  • Khozin-Goldberg, I. and Z. Cohen. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701.
  • Kilham, S. S., D. A. Kreeger, C. E. Goulden, and S. G. Lynn. 1997. Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biology 38:591–6.
  • Kim, M. K., J. W. Park, C. S. Park, S. J. Kim, K. H. Jeune, M. U. Chang, and J. Acreman. 2007. Enhanced production of Scenedesmus Sp. (Green microalgae) using a new medium containing fermented swine waste water. Bioresource Technology 98:2220–8.
  • Kumar, G., R. Srivastava, and R. Singh. 2013. Exploring biodiesel: Chemistry, biochemistry, and microalgal source. International Journal of Green Energy 10:775–96.
  • Kumar, K., C. N. Dasgupta, B. Nayak, P. Lindblad, and D. Das. 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 102(8):4945–53.
  • Kunjapur, A. M. and R. B. Eldridge. 2010. Photobioreactor Design for Commercial Biofuel Production from Microalgae. Industrial Engineering and Chemistry Research. 49:3516–26.
  • Kywe, T. T. and M. M. Oo. 2009. Production of biodiesel from jatropha oil (Jatropha curcas) in pilot plant. World Academic Science Engineering Technology 50:477–83.
  • Lee, A. K., D. M. Lewis, and P. J. Ashman. 2009. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology 21:559–67.
  • Li, Y., D. Han, G. Hu, M. Sommerfeld, and Q. Hu. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering 107:258–68.
  • Liu, B. and C. Benning. 2013. Lipid metabolism in microalgae distinguishes itself. Current Opinion in Biotechnology 24:300–9.
  • Liu, J., J. Huang, K. W. Fan, Y. Jiang, Y. Zhong, Z. Sun, and F. Chen. 2010. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology 101:8658–63.
  • Liu, J., J. Huang, Z. Sun, Y. Zhong, Y. Jiang, and F. Chen. 2011a. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology 102:106–10.
  • Liu, X., D. Brune, W. Vermaas, and R. Curtiss III. 2009a. Production and secretion of fatty acids in genetically engineered cyanobacteria. Proceedings of National Academy of Sciences of United States of America. 107:1–6
  • Liu, X., S. Duan, A. Li, N. Xu, Z. Cai, and Z. Hu. 2009b. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. Journal of Applied Phycology 21:239–46.
  • Liu, X., S. Fallon, J. Sheng, and R. Curtiss III. 2011b. CO2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass. Proceedings of National Academy of Sciences 108:6905–8.
  • Liu, Z. Y., G. Wang, and B. C. Zhou. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology 99:4717–22.
  • Low-Decaire, E., G. F. Fussmann, and G. Bell. 2011. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17:2525–35.
  • MacKenzie, T. D. B., J. M. Johnson, A. M. Cockshutt, R. A. Burns, and D. A. Campbell. 2005. Large reallocations of carbon, nitrogen, and photosynthetic reductant among phycobilisomes, photosystems, and Rubisco during light acclimation in Synechococcus elongatus strain PCC7942 are constrained in cells under low environmental inorganic carbon. Archives of Microbiology 183:190–202.
  • Mallick, N., S. Mandal, A. K. Singh, M. Bishai, and A. Dash. 2011. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology and Biotechnology 87:137–45.
  • Mandal, S. and N. Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology 84:281–91.
  • Martel, C. M. 2009. Nitrogen-deficient microalgae are rich in cell-surface mannose: Potential implications for prey biorecognition by phagotrophic protozoa. Brazilian Journal of Microbiology 40:86–9.
  • Mata, T. M., A. A. Martins, and N. S. Caeteno. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14:217–32.
  • McGinnis, K. M., T. A. Dempster, and M. R. Sommerfeld. 1997. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. Journal of Applied Phycology l9:19–24.
  • Meng, X., J. Yang, X. Xu, Q. Nie, and M. Xian. 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy 34:1–5.
  • Miao, X. and Q. Wu. 2006. Biodiesel production from microalgal oil. Bioresource Technology 97:841–6.
  • Mohammady, N. G.-E., C. W. Rieken, S. R. Lindell, C. M. Reddy, H. M. Taha, C. P. L. Lau, and C. A. Carmichael. 2012. Age of nitrogen deficient microalgal cells is a key factor for maximizing lipid content. Research Journal of Phytochemistry 6:42–53.
  • Molina-Grima, E., E.-H. Belarbi, F. G. Acien-Fernandez, A. Robles-Medina, and C. Yusuf. 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances 20:491–515.
  • Moroney, J. V. and R. A. Ynalvez. 2007. A proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell 6:1251–9.
  • Mulbry, W., S. Kondrad, C. Pizarro, and E. Kebede-Westhead. 2008. Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology 99(17):8137–42.
  • Muralidhar, A. P., S. Karthireddy, C. Prakash, C. Kalidasa, and R. P. Naik. 2010. Comparative studies on fatty acid composition of three marine macroalgae collected from Mandapam region: South east coast of India. World Applied Science Journal 11:958–65.
  • Narayan, M. S., G. P. Manoj, K. Vatchravelu, N. Bhagyalakshmi, and M. Mahadevaswamy. 2005. Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. International Journal Food Science Nutrition 56:521–8.
  • Nassif, N. and J. Livage. 2011. From diatoms to silica-based biohybrids. Chemical Society Reviews 40:849–59.
  • Oh, H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S. Kwon, and B. D. Yoon. 2001. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters 23:1229–34.
  • Olofsson, M., T. Lamela, E. Nilsson, J. Pascal, V. del Pino, P. Uronen, and C. Legrand. 2012. Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–92.
  • Ong, S.-C., C.-Y. Kao, S.-Y. Chiu, M.-T. Tsai, and C.-S. Lin. 2010. Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresource Technology 101:2880–3.
  • Otsuka, H. 1961. Changes of lipid and carbohydrate contents of Chlorella cells during the sulfur starvation, as studied by the technique of synchronous culture. Journal of General Applied Microbiology 7:72–7.
  • Pan, Y. Y., S. T. Wang, L. T. Chuang, Y. W. Chang, and C. N. Nathan. 2011. Isolation of thermo-tolerant and high lipid content green microalgae: Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus. Bioresource Technology 102:10510–7.
  • Pegallapati, A. K. and N. Nirmalakhandan. 2011. Energetic evaluation of an internally illuminated photobioreactor for algal cultivation. Biotechnology Letters 33:2161–7.
  • Piorrech, M. and P. Pohl. 1984. Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue green algae during one growth phase. Phytochemistry 23:217–23.
  • Pittman, J. K., A. P. Dean, and O. Osundeko. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology 102:17–25.
  • Pratiwi, A. R., D. Syah, L. Hardjito, L. M. G. Panggabean, and M. T. Suhartono. 2009. Fatty acid synthesis by Indonesian marine diatom, Chaetoceros gracilis. Hayati Journal of Biosciences 16:151–6.
  • Quinn, P. J. and W. P. Williams. 1983. The structural role of lipids in photosynthetic membranes. Biochimica et Biophysica Acta 737:223–66.
  • Radakovits, R., P. M. Eduafo, and M. C. Posewitz. 2010a. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metabolic Engineering 13:89–95.
  • Radakovits, R., R. E. Jinkerson, Al Darzins, and M. C. Posewitz. 2010b. Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9:486–501.
  • Rao, A. R., C. Dayananda, R. Sharada, T. R. Shamala, and G. A. Ravishankar. 2007. Effect of salinity on growth of Botryococccus braunii and its constituents. Bioresource Technology 98:560–4.
  • Ravishankar, G. A. and R. Sarada. 2007. Proc. Discussion Meet on Energy Biosciences, Department of Biotechnology, Ministry of Science and Technology, September 10–11.
  • Reinfelder, J. R., A. Milligan, J. François, and M. M. Morel. 2004. The Role of the C4 Pathway in Carbon Accumulation and Fixation in a Marine Diatom. Plant Physiology 135:2106–11.
  • Reitan, K. I., J. R. Rainuzzo, and Y. Olsen. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology 30:972–9.
  • Rezanka, T., I. Viden, J. V. Go, and V. M. Dembitsky. 2003. Polar lipids and fatty acids of three wild cyanobacterial strains of the genus Chroococcidiopsis. Folia Microbiology 48:781–6.
  • Riekhof, W. R., B. B. Sears, and C. Benning. 2005. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1Cr. Eukaryotic Cell. 4:242–52.
  • Rodolfi, L., G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, C. Bonini, and M. R. Tredici. 2008. Microalgae for oil: Strain selection, induction of lipid biosynthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnology and Bioengineering 102:100–12.
  • Roessler, P. G. 1988. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Archives of Biochemistry and Biophysics 267:521–8.
  • Saha, S. K., L. Uma, and G. Subramanian. 2000. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiology and Ecology 45:263–72.
  • Salehizadeh, H., M. Vossoughi, and I. Alemzadeh. 2000. Some investigations on bioflocculant producing bacteria. Biochemical Engineering Journal 5:39–44.
  • Salim, S., R. Bosma, M. H. Vermuë, and R. H. Wijffels. 2011. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology 23:849–55.
  • Sallal, A. K., N. A. Nimer, and S. S. Radwan. 1990. Lipid and fatty acid composition of fresh water cyanobacteria. Journal of Microbiology 136:2043–8.
  • Sato, N. and N. Murata. 1980. Temperature shift-induced responses in lipids in the blue-green alga Anabaena variabilis. The central role of diacylmonogalactosylglycerol in thermoadaptation. Biochimica et Biophysica Acta 619:353–66.
  • Sato, N. and N. Murata. 1982. Lipid biosynthesis in the blue green alga Anabaena variabilis. II Fatty acids and lipid molecular species. Biochimica et Biophysica Acta 710:270–89.
  • Sato, N., M. Hagio, H. Wada, and M. Tsuzuki. 2000. Environmental effects on acidic lipids of thylakoid membranes. Recent Advances in Biochemistry and Plant Lipid 28:912–4.
  • Schenk, P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer. 2008. Second generation biofuels: High efficiency microalgae for biodiesel production. Bioenergy Research 1:20–43.
  • Schnurr, P. J., G. S. Espie, and D. G. Allen. 2013. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresource Technology 136:337–44.
  • Secher, S., J. Szaub, L. May, and S. Purton. 2010. Lipid productivity in a fast-growing green alga and its use as a ‘whole cell’ fuel additive. Proceedings of the 14th International Conference on Cell and Molecular Biology of Chlamydomonas, Wheaton College, 26 E. Main Street, Norton, Massachusetts 02766, June 6–10.
  • Sharatchandra, K. and M. Rajashekhar. 2011. Total lipid and fatty acid composition in some freshwater cyanobacteria. Journal of Algal Biomass Utilization 2:83–97.
  • Sharma, K. K., H. Schuhmann, and P. M. Schenk. 2012. High lipid induction in microalgae for biodiesel production. Energies 5:1532–53.
  • Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler. 1998. A look back at the U. S. Department of Energy’s Aquatic Species Program: Biodiesel from algae by the National Renewable Energy Laboratory. Report NREL/TP-580–24190, National Renewable Energy laboratory, Golden, CO.
  • Siaut, M., S. Cuiné, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylidès, Y. Li-Beisson, and G. Peltier. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 11:7–21.
  • Siron, R., G. Giusti, and B. Berland. 1989. Changes in fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphate deficiency. Marine Ecology- Progress Series 55:95–100.
  • Spalding, M. L., W. Fang, Y. Wang, M. Castruita, D. Casero, M. Pellegrini, and S. Merchant. 2010. Transcriptome comparisons for autotrophic and mixotrophic growth of Chlamydomonas. Proceedings of the 14th International Conference on Cell and Molecular Biology of Chlamydomonas.
  • Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101:87–96.
  • Stern, D. B. and E. H. Harris. 2009. The Chlamydomonas Source Book. Organellar and Metabolic Processes. 2nd ed., Vol. 2. Waltham, MA: Academic Press.
  • Su, C. H., L. J. Chien, J. Gomes, Y. S. Lin, Y. K. Yu, J. S. Liou, and R. J. Syu. 2011. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology 23:903–8.
  • Subramaniam, R., S. Dufreche, M. Zappi, and R. Bajpai. 2010. Microbial lipids from renewable resources: Production and characterization. Journal of Industrial Microbiology and Biotechnology 37:1271–1287.
  • Takagi, M. and Karseno, T. 2006. Yoshida effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering 101:223–6.
  • Takahashi, H., C. E. Braby, and A. R. Grossman. 2001. Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. Plant Physiology 127:665–73.
  • Tang, D., W. Han, P. Li, X. Miao, and J. Zhong. 2010. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102:3071–6.
  • Ten, L. N., W. T. Im, M.-K. Kim, M. S. Kang, and S. T. Lee. 2004. Development of plate technique for screening of polysaccharide degrading microorganisms by using a mixture of chromogenic substances. Journal of Microbiological Methods 56:375–82.
  • Tonon, T., D. Harvey, T. R. Larson, and I. A. Graham. 2002. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24.
  • Tornabene, T. G. 1983. Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme and Microbial Technology 5:435–40.
  • Tsuzuki, M., E. Ohnuma, N. Sato, T. Takaku, and A. Kawaguchi. 1990. Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiology 93:851–6.
  • Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2:012701–15.
  • Urzica, E., L. Adler, D. Casero, M. Pellegrini, S. G. Clarke, and S. Merchant. 2010. Transcriptome analysis of Chlamydomonas in different iron nutritional conditions. Proceedings of the14th International Conference on Cell and Molecular Biology of Chlamydomonas, Wheaton College, 26 E. Main Street, Norton, Massachusetts 02766, June 6–10.
  • Uslu, L., O. Isik, K. Koc, and T. Goksan. 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology 10(3):386–9.
  • Vandamme, D., I. Foubert, B. Meesschaert, and K. Muylaert. 2010. Flocculation of microalgae using cationic starch. Journal of Applied Phycology 22:525–30.
  • Verma, N. M., S. Mehrotra, A. Shukla, and B. N. Mishra. 2010. Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology 9:1402–11.
  • Vijayaraghavan, K. and K. Hemanathan. 2009. Biodiesel production from freshwater algae. Energy and Fuels 23:5448–53.
  • Wang, S. T., Y. Y. Pan, C. C. Liu, L. T. Chuang, and C. N. N. Chen. 2011. Characterization of green microalgae UTEX 2219–4: Effects of photosynthesis and osmotic stress on oil body formation. Botanical Studies 52:305–12.
  • Wang, Y. and M. H. Spalding. 2010. Role of LCIB in Chlamydomonas limiting CO2 acclimation: Localization and interactions. Proceedings of the14th International Conference on Cell and Molecular Biology of Chlamydomonas, Wheaton College, 26 E. Main Street, Norton, Massachusetts 02766, June 6–10.
  • Wang, Z. T., N. Ullrich, S. Joo, S. Waffenschmidt, and U. Goodenough. 2009. Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8:1856–68.
  • Weldy, C. S. and M. H. Huesemann. 2007. Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. Journal of Undergraduate Research 7:115–22.
  • Widjaja, A., C. C. Chien, and Y. Ju. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of Taiwan Institute of Chemical Engineering 40:13–20.
  • Williams, P. J. le B and L. M. L. Laurens. 2010. Microalgae as biodiesel and biomass feed stocks: Review & analysis of the biochemistry, energetic & economics. Energy and Environmental Science 3:554–90.
  • Woertz, I., A. Feffer, T. Lundquist, and Y. Nelson. 2009. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering 135:1115–22.
  • Work, V. H., R. Radakovits, R. E. Jinkerson, J. E. Meuser, L. G. Elliott, D. J. Vinyard, L. M. L. Laurens, G. C. Dismukes, and M. C. Posewitz. 2010. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 9:1251–61.
  • Xia, J. and K. Gao. 2003. Effects of doubled atmospheric CO2 concentration on the photosynthesis and growth of Chlorella pyrenoidosa cultured at varied levels of light. Fisheries Science 69:767–71.
  • Xiong, W., C. Gao, D. Yan, C. Wu, and Q. Wu. 2010. Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology 101:2287–93.
  • Xiong, W., X. Li, J. Xiang, and Q. Wu. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology 78:29–36.
  • Xu, H., X. Miao, and Q. Wu. 2006. High quality biodiesel production from microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126:499–507.
  • Xu, L., F. Wang, and C.-Z. Liu. 2010. Development of an effilcient electroflocculation technology integrated with dispersed-air fllotation for harvesting microalgae. Journal of Chemical Technology and Biotechnology 85:1504–7.
  • Yang, Y. and K. Gao. 2003. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). Journal of Applied Phycology 15:379–89.
  • Yeesang, C. and B. Cheirsilp. 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on the lipid production by microalgae from freshwater sources in Thailand. Bioresource Technology 102(3):3034–40.
  • Yeh, K. L. and J. S. Chang. 2011. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnology Journal 6:1358–66.
  • Yiang, L., M. Kang-Sen, and S. Shi-Chun. 2000. Total lipid and fatty acid composition of eight strains of marine diatoms. Chinese Journal Oceanology and Limnology 18:345–9.
  • Yoo, C., S. Y. Jun, J. Y. Lee, C. Y. Ahn, and H. M. Oh. 2009. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101:S71–4.
  • Young, E. B. and J. Beardall. 2003. Rapid ammonium- and nitrate-induced perturbations to Chl a fluorescence in nitrogen stressed Dunaliella tertiolecta (Chlorophyta). Journal of Phycology 39:332–42.
  • Yu, E. T., F. J. Zendejas, P. D. Lane, S. Gaucher, B. A. Simmons, and T. W. Lane. 2009. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacillareophyceae) during starvation. Journal of Applied Phycology 21:669–81.
  • Yun, Y.-S., S. B. Lee, J. M. Park, C.-I. Lee, and J.-W. Yang. 1997. Carbondioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology 69:451–5.
  • Zemke, P. E., B. D. Wood, and D. J. Dye. 2010. Considerations for the maximum production rates of triacylglycerols from microalgae. Biomass and Bioenergy 34:145–51.
  • Zhao, B., Y. Zhang, K. Xiong, Z. Zhang, X. Hao, and T. Liu. 2011. Effect of cultivation mode on microalgal growth and CO2 filxation. Chemical Engineering Research and Design 89:1758–62.
  • Zhekisheva, M., S. Boussiba, I. Khozin-Goldberg, A. Zarka, and Z. Cohen. 2002. Accumulation of oleic acid in Haematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. Journal of Phycology 38:325–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.