217
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A real-time simulating non-isothermal mathematical model for the passive feed direct methanol fuel cell

, &

References

  • Achmad, F., S. K. Kamarudin, W. R. W. Daud, and E. H. Majlan. 2011. Passive direct methanol fuel cells for portable electronic devices. Applied Energy 88:1681–9.
  • Argyropoulos, P., K. Scott, and W. Taama. 1999. One-dimensional thermal model for direct methanol fuel cell stacks Part I. Model development. Journal of Power Sources 79:169–83.
  • Bahrami, H., and A. Faghri. 2011a. Exergy analysis of a passive direct methanol fuel cell. Journal of Power Sources 196:1191–204.
  • Bahrami, H., and A. Faghri. 2011b. Water management in a passive DMFC using highly concentrated methanol solution. Journal of Fuel Cell Science and Technology 8:02101101–15.
  • Basri, S., S. K. Kamarudin, W. R. W. Daud, and M. M. Ahmad. 2010. Non-linear optimization of passive direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy 35:1759–68.
  • Basri, S., S. K. Kamarudin, W. R. W. Daud, Z. Yaakub, M. M. Ahmad, N. Hashim, and U. A. Hasran. 2009. Unsteady-state modelling for a passive liquid-feed DMFC. International Journal of Hydrogen Energy 34:5759–69.
  • Cai, W., S. Li, L. Feng, J. Zhang, D. Song, W. Xing, and C. Liu. 2011. Transient behavior analysis of a new designed passive direct methanol fuel cell fed with highly concentrated methanol. Journal of Power Sources 196:3781–9.
  • Cai, W., S. Li, L. Yan, L. Feng, J. Zhang, L. Liang, W. Xing, and C. Liu. 2011. Design and simulation of a liquid electrolyte passive direct methanol fuel cell with low methanol crossover. Journal of Power Sources 196:7616– 26.
  • Cao, J., M. Chen, J. Chen, S. Wang, Z. Zou, Z. Li, D. Akins, and H. Yang. 2010. Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells. International Journal of Hydrogen Energy 35:4622–9.
  • Chang, K. Y., C. Y. Chang, W. J. Wang, and C. Y. Chen. 2012. Modeling polarization of a DMFC system via neural network with immune-based particle swarm optimization. International Journal of Green Energy 9:309–21.
  • Chen, R., and T. S. Zhao. 2005. Mathematical modeling of a passive-feed DMFC with heat transfer effect. Journal of Power Sources 152:122–30.
  • Chen, R., T. S. Zhao, W. W. Yang, and C. Xu. 2008. Two-dimensional two-phase thermal model for passive direct methanol fuel cells. Journal of Power Sources 175:276–87.
  • Chiu, Y. 2010. An algebraic semi-empirical model for evaluating fuel crossover fluxes of a DMFC under various operating conditions. International Journal of Hydrogen Energy 35:6418–30.
  • Chiu, Y. J., T. L. Yu, and Y. C. Chung. 2011. A semi-empirical model for efficiency evaluation of a direct methanol fuel cell. Journal of Power Sources 196:5053–63.
  • Danilov, V. A., J. Lim, I. Moon, and H. Chang. 2006. Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell. Journal of Power Sources 162:992–1002.
  • Esmaili, Q., A. A. Ranjbar, and M. Abdollahzadeh. 2013. Numerical simulation of a direct methanol fuel cell through a 1D+1D approach. International Journal of Green Energy 10:190–204.
  • Furukawa, K., F. Kaga, K. Okajima, and M. Sudoh. 2004. Generation performance of gas-feed direct methanol fuel cell. International Journal of Green Energy 1:123–35.
  • Garcia-Diaz, B. L., J. R. Patterson, and J. W. Weidner. 2012. Quantifying individual losses in a direct methanol fuel cell. Journal of Fuel Cell Science and Technology 9:0110121–12.
  • Gharibi, H., M. Amani, H. Pahlavanzadeh, and M. Kazemeini. 2013. Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell. Electrochimica Acta 97:216–25.
  • Gholami, O., S. Imen, and M. Shakeri. 2013. Effect of non-uniform parallel channel on performance of passive direct methanol fuel cell. International Journal of Hydrogen Energy 38:3395–400.
  • Guo, H., Y. Chen, Y. Xue, F. Ye, and C. Ma. 2013. Three-dimensional transient modeling and analysis of two-phase mass transfer in air-breathing cathode of a fuel cell. International Journal of Hydrogen Energy 38:11028–11037.
  • Guo, H., and C. Ma. 2004. 2D analytical model of a direct methanol fuel cell. Electrochemistry Communications 6:306–12.
  • He, Y. L., X. L. Li, Z. Miao, and Y. W. Liu. 2009. Two-phase modeling of mass transfer characteristics of a direct methanol fuel cell. Applied Thermal Engineering 29:1998–2008.
  • Hosseinzadeha, E., and M. Rokni. 2013. Development and validation of a simple analytical model of the proton exchange membrane fuel cell (PEMFC) in a fork-lift truck power system. International Journal of Green Energy 10:523–43.
  • Jewett, G., A. Faghri, and B. Xiao. 2009. Optimization of water and air management systems for a passive direct methanol fuel cell. International Journal of Heat and Mass Transfer 52:3564–75.
  • Jewett, G., Z. Guo, and A. Faghri. 2007. Water and air management systems for a passive direct methanol fuel cell. Journal of Power Sources 168:434–46.
  • Jung, G., A. Su, C. Tu, and F. Weng. 2005. Effect of operating parameters on the DMFC performance. Journal of Fuel Cell Science and Technology 2:81–5.
  • Kamarudin, S. K., F. Achmad, and W. R. W. Daud. 2009. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy 34:6902–16.
  • Lee, S. J., C. Y. Lee, K. T. Yang, Y. M. Lee, Y. J. Chang, and C. L. Ho. 2013. The surface morphology effects of a metallic bipolar plate on the interfacial contact resistance of a proton exchange membrane fuel cell. International Journal of Green Energy 10:739–53.
  • Li, X. Y., W. W. Yang, Y. L. He, T. S. Zhao, and Z. G. Qu. 2012. Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells. Applied Thermal Engineering 48:392–401.
  • Liu, J. G., T. S. Zhao, R. Chen, and C. W. Wong. 2005. The effect of methanol concentration on the performance of a passive DMFC. Electrochemistry Communications 7:288–94.
  • Liu, J. G., T. S. Zhao, Z. X. Liang, and R. Chen. 2006. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. Journal of Power Sources 153:61–7.
  • Meyers, J. P., and B. Bennett. 2011. Analytical model to relate DMFC material properties to optimum fuel efficiency and system size. Journal of Power Sources 196:9473–80.
  • Odukoya, A., I. Dincer, and G. F. Naterer. 2011. Exergy analysis of a gasification-based combined cycle with solid oxide fuel cells for cogeneration. International Journal of Green Energy 8:834–56.
  • Oliveira, V. B., D. S. Falcao, C. M. Rangel, and A. M. F. R. Pinto. 2008. Heat and mass transfer effects in a direct methanol fuel cell: A 1D model. International Journal of Hydrogen Energy 33:3818–28.
  • Oliveira, V. B., C. M. Rangel, and A. M. F. R. Pinto. 2011. One-dimensional and non-isothermal model for a passive DMFC. Journal of Power Sources 196:8973–82.
  • Park, Y. H., and J. A. Caton. 2008. Monitoring an electrode flooding through the back pressure in a proton exchange membrane (PEM) fuel cell. International Journal of Green Energy 5:347–59.
  • Rashidi, R., I. Dincer, G. F. Naterer, and P. Berg. 2009. Performance evaluation of direct methanol fuel cells for portable applications. Journal of Power Sources 187:509–16.
  • Rice, J., and A. Faghri. 2006. A transient, multi-phase and multi-component model of a new passive DMFC. International Journal of Heat and Mass Transfer 49:4804–20.
  • Rice, J., and A. Faghri. 2008. Thermal and start-up characteristics of a miniature passive liquid feed DMFC system, including continuous/discontinuous phase limitations. Journal of Heat Transfer 130:062001–11.
  • Rowe, A., and X. G. Li. 2001. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power Sources 102:82–96.
  • Scott, K., W. Taama, and J. Cruickshank. 1997. Performance and modelling of a direct methanol solid polymer electrolyte fuel cell. Journal of Power Sources 65:159–71.
  • Seo, S., and C. Lee. 2010. A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Applied Energy 87:2597–604.
  • Shrivastava, N. K., S. B. Thombre, and K. L. Wasewar. 2013. A non-isothermal mathematical model for performance evaluation of passive direct methanol fuel cell. Journal of Energy Engineering 139:266–74.
  • Sudoh P. M., T. Hakamata, K. Furukawa, and K. Okajima. 2004. Modification effect of proton-exchange membrane on methanol permeation and proton conductivity for direct methanol fuel cell. International Journal of Green Energy 1:153–65.
  • Vera, M. 2007. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics. Journal of Power Sources 171:763–77.
  • Vinodh, R., and D. Sangeetha. 2012. A novel composite membrane from QPSU and SiO2 for solid alkaline fuel cell applications. International Journal of Green Energy 6:571–82.
  • Wang, S. J., W. W. Huo, Z. Q. Zou, Y. J. Qiao, and H. Yang. 2011. Computational simulation and experimental evaluation on anodic flow field structures of micro direct methanol fuel cells. Applied Thermal Engineering 31:2877–84.
  • Wang, Z. H., and C. Y. Wang. 2003. Mathematical modeling of liquid-feed direct methanol fuel cells. Journal of Electrochemical Society 150:A508–19.
  • Xiao, B., and A. Faghri. 2008. Transient modeling and analysis of a passive liquid-feed DMFC. International Journal of Heat and Mass Transfer 51:3127–43.
  • Xu, C., and A. Faghri. 2010. Water transport characteristics in a passive liquid-feed DMFC. International Journal of Heat and Mass Transfer 53:1951–66.
  • Xu, C., and A. Faghri. 2011. Analysis of an active tubular liquid-feed direct methanol fuel cell. Journal of Power Sources 196:6332–46.
  • Xu, C., A. Faghri, X. Li, and T. Ward. 2010. Methanol and water crossover in a passive liquid-feed direct methanol fuel cell. International Journal of Hydrogen Energy 35:1769–77.
  • Yan, T. Z., and T. C. Jen. 2008. Two-phase flow modeling of liquid-feed direct methanol fuel cell. International Journal of Heat and Mass Transfer 51:1192–204.
  • Yang, Q., A. Kianimanesh, T. Freiheit, S. S. Park, and D. Xue. 2011. A semi-empirical model considering the influence of operating parameters on performance for a direct methanol fuel cell. Journal of Power Sources 196:10640–51.
  • Yang, W. W., and T. S. Zhao. 2007. A two-dimensional, two-phase mass transport model for liquid- feed DMFCs. Electrochimica Acta 52:6125–40.
  • Yang, W. W., T. S. Zhao, and Q. X. Wu. 2011. Modeling of a passive DMFC operating with neat methanol. International Journal of Hydrogen Energy 36:6899–913.
  • Yeh, T., and C. Chen. 2008. Modeling and optimizing the performance of a passive direct methanol fuel cell. Journal of Power Sources 175:353–62.
  • Yin, K. 2008. A theoretical model of the membrane electrode assembly of liquid feed direct methanol fuel cell with consideration of water and methanol crossover. Journal of Power Sources 179:700–10.
  • Yousefi, S., and D. Ganji. 2012. Experimental investigation of a passive direct methanol fuel cell with 100 cm2 active areas. Electrochimica Acta 85:693–9.
  • Yousefi, S., M. Shakeri, and K. Sedighi. 2013. The effect of cell orientation and environmental conditions on the performance of a passive DMFC single cell. Ionics 19:1637–47.
  • Yousefi, S., and M. Zohoor. 2013. Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC. Ionics 19:1195–201.
  • Yu, X., and P. G. Pickup. 2009. PdBi/C and PtPb/C bimetallic catalysts for direct formic acid fuel cells. International Journal of Green Energy 6:571–82.
  • Yuan, T., Y. Kang, J. Chen, C. Du, Y. Qiao, X. Xue, Z. Zou, and H. Yang. 2011. Enhanced performance of a passive direct methanol fuel cell with decreased Nafion aggregate size within the anode catalytic layer. International Journal of Hydrogen Energy 36:10000–5.
  • Yuan, W., Y. Tang, X. Yang, B. Liu, and Z. Wan. 2012. Structural diversity and orientation dependence of a liquid-fed passive air-breathing direct methanol fuel cell. International Journal of Hydrogen Energy 37:9298–313.
  • Zago, M., A. Casalegno, C. Santoro, and R. Marchesi. 2012. Water transport and flooding in DMFC: Experimental and modeling analyses. Journal of Power Sources 217:381–91.
  • Zhang, J., H. Lia, Z. Shia, and J. Zhanga. 2010. Effects of hardware design and operation conditions on PEM fuel cell water flooding. International Journal of Green Energy 7:461–74.
  • Zhao, T. S., C. Xu, R. Chen, and W. W. Yang. 2009. Mass transport phenomena in direct methanol fuel cells. Progress in Energy and Combustion Science 35:275–92.
  • Zhao, T. S., R. Chen, W. W. Yang, and C. Xu. 2009. Small direct methanol fuel cells with passive supply of reactants. Journal of Power Sources 191:185–202.
  • Zhao, T. S., W. W. Yang, R. Chen, and Q. X. Wu. 2010. Towards operating direct methanol fuel cells with highly concentrated fuel. Journal of Power Sources 195:3451–62.
  • Zou, J., Y. He, Z. Miao, and X. Li. 2010. Non-isothermal modeling of direct methanol fuel cell. International Journal of Hydrogen Energy 35:7206–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.