1,429
Views
23
CrossRef citations to date
0
Altmetric
Review Articles

Recent progress in bioethanol production from lignocellulosic materials: A review

, , , , , & show all

References

  • Ahmed, I.N., P.L.T. Nguyen, L.H. Huynh, S. Ismadji, and Y.-H. Ju. 2013. Bioethanol production from pretreated Melaleuca leucadendron shedding bark–Simultaneous saccharification and fermentation at high solid loading. Bioresource Technology 136:213–21. doi:10.1016/j.biortech.2013.02.097.
  • Ahring, B.K. and P. Westermann. 2007. Coproduction of bioethanol with other biofuels. In Biofuels, Olsson, L. (ed.). Berlin: Springer. pp. 289–302.
  • Akpinar, O., K. Erdogan, and S. Bostanci. 2009. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydrate Research 344:660–66. doi:10.1016/j.carres.2009.01.015.
  • Alinia, R., S. Zabihi, F. Esmaeilzadeh, and J.F. Kalajahi. 2010. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering 107:61–66. doi:10.1016/j.biosystemseng.2010.07.002.
  • Alizadeh, H., F. Teymouri, T.I. Gilbert, and B.E. Dale. 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology 124:1133–42. doi:10.1385/ABAB:124: 1-3.
  • Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101:4851–61. doi:10.1016/j.biortech.2009.11.093.
  • Amores, I., I. Ballesteros, P. Manzanares, F. Sáez, G. Michelena, and M. Ballesteros. 2013. Ethanol production from sugarcane bagasse pretreated by steam explosion. Electronic Journal of Energy & Environment 1:25–36. doi:10.7770/ejee-V1N1-art519.
  • Apar, D.K. and B. Özbek. 2004. σ-Amylase inactivation during corn starch hydrolysis process. Process Biochemistry 39:1877–92. doi:10.1016/j.procbio.2003.09.014.
  • Araque, E., C. Parra, J. Freer, D. Contreras, J. Rodríguez, R. Mendonça, and J. Baeza. 2008. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology 43:214–19. doi:10.1016/j.enzmictec.2007.08.006.
  • Arato, C., E.K. Pye, and G. Gjennestad. 2005. The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Applied Biochemistry and Biotechnology 123:0871–82. doi:10.1385/ABAB:123: 1-3.
  • Arora, A., L. Nain, and J. Gupta. 2005. Solid-state fermentation of wood residues by Streptomyces griseus B1, a soil isolate, and solubilization of lignins. World Journal of Microbiology and Biotechnology 21:303–08. doi:10.1007/s11274-004-3827-3.
  • Badger, P. 2002. Ethanol from cellulose: A general review. Trends in New Crops and New Uses 14:17–21.
  • Bai, F. 2007. Process oscillations in continuous ethanol fermentation with Saccharomyces cerevisiae. Waterloo, Ontario, Canada: University of Waterloo.
  • Bak, J.S., M.D. Kim, I.-G. Choi, and K.H. Kim. 2010. Biological pretreatment of rice straw by fermenting with Dichomitus squalens. New Biotechnology 27:424–34. doi:10.1016/j.nbt.2010.02.021.
  • Bak, J.S., J.K. Ko, I.G. Choi, Y.C. Park, J.H. Seo, and K.H. Kim. 2009a. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering 104:471–82. doi:10.1002/bit.22423.
  • Bak, J.S., J.K. Ko, Y.H. Han, B.C. Lee, I.-G. Choi, and K.H. Kim. 2009b. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology 100:1285–90. doi:10.1016/j.biortech.2008.09.010.
  • Balat, M. 2008. Global trends on the processing of bio-fuels. International Journal of Green Energy 5:212–38. doi:10.1080/15435070802107322.
  • Balat, M. 2009. Gasification of biomass to produce gaseous products. Energy Sources, Part A 31:516–26. doi:10.1080/15567030802466847.
  • Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management 52:858–75. doi:10.1016/j.enconman.2010.08.013.
  • Balat, M. and H. Balat. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86:2273–82. doi:10.1016/j.apenergy.2009.03.015.
  • Balat, M., H. Balat, and C. Öz. 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science 34:551–73. doi:10.1016/j.pecs.2007.11.001.
  • Bals, B., C. Wedding, V. Balan, E. Sendich, and B. Dale. 2011. Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresource Technology 102:1277–83. doi:10.1016/j.biortech.2010.08.058.
  • Banerjee, S., S. Mudliar, R. Sen, B. Giri, D. Satpute, T. Chakrabarti, and R. Pandey. 2010. Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining 4:77–93. doi:10.1002/bbb.v4:1.
  • Barros, R., R. Paredes, T. Endo, E. Bon, and S.-H. Lee. 2013. Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology 136:288–94. doi:10.1016/j.biortech.2013.03.009.
  • Benazzi, T., S. Calgaroto, V. Astolfi, C. Dalla Rosa, J.V. Oliveira, and M.A. Mazutti. 2013. Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme and Microbial Technology 52:247–50. doi:10.1016/j.enzmictec.2013.02.001.
  • Bohlmann, G.M. 2006. Process economic considerations for production of ethanol from biomass feedstocks. Industrial Biotechnology 2:14–20. doi:10.1089/ind.2006.2.14.
  • Borines, M.G., R.L. De Leon, and J.L. Cuello. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology 138:22–29. doi:10.1016/j.biortech.2013.03.108.
  • Börjesson, P., S. Ahlgren, Z. Barta, L. Björnsson, A. Ekman, P. Erlandsson, P.-A. Hansson, H. Karlsson, E. Kreuger, and J. Lindstedt. 2013. Sustainable performance of lignocellulose-based ethanol and biogas co-produced in innovative biorefinery systems. Lund, Sweden: The Swedish Knowledge Centre for Renewable Transportation Fuels.
  • Bridges, N.J., K.E. Gutowski, and R.D. Rogers. 2007. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chemistry 9:177–83. doi:10.1039/B611628K.
  • Bura, R., R. Chandra, and J. Saddler. 2009. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnology Progress 25:315–22. doi:10.1002/btpr.v25:2.
  • Buranov, A.U. and G. Mazza. 2012. Fractionation of flax shives with pressurized aqueous ethanol. Industrial Crops and Products 35:77–87. doi:10.1016/j.indcrop.2011.06.014.
  • Cao, G., N. Ren, A. Wang, D.-J. Lee, W. Guo, B. Liu, Y. Feng, and Q. Zhao. 2009. Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 34:7182–88. doi:10.1016/j.ijhydene.2009.07.009.
  • Carrasco, C., H. Baudel, M. Peñarrieta, C. Solano, L. Tejeda, C. Roslander, M. Galbe, and G. Lidén. 2011. Steam pretreatment and fermentation of the straw material “Paja Brava” using simultaneous saccharification and co-fermentation. Journal of Bioscience and Bioengineering 111:167–74. doi:10.1016/j.jbiosc.2010.10.009.
  • Carvalheiro, F., L.C. Duarte, and F.M. Gírio. 2008. Hemicellulose biorefineries: A review on biomass pretreatments. Journal of Scientific & Industrial Research 67:849–64.
  • Chandel, A.K., S.S. Da Silva, and O.V. Singh. 2011. Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In Biofuel production-recent developments and prospects, ed. M.A. Dos Santos Bernardes, Rijeka, Croatia: In Tech. pp. 225–46
  • Chang, K.-L., J. Thitikorn-amorn, J.-F. Hsieh, B.-M. Ou, S.-H. Chen, K. Ratanakhanokchai, P.-J. Huang, and S.-T. Chen. 2011. Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy 35:90–95. doi:10.1016/j.biombioe.2010.08.027.
  • Chang, V.S., B. Burr, and M.T. Holtzapple. 1997. Lime pretreatment of switchgrass. In Biotechnology for fuels and chemicals, Davison, B. H., Wyman, C. E., Finkelstein, M. (eds.); New York:Humana Press.
  • Chen, M., J. Zhao, and L. Xia. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers 71:411–15. doi:10.1016/j.carbpol.2007.06.011.
  • Chena, J., L. Zhanga, P. Zhana, Y. Wanga, B. Aia, and C. Wanga. 2011. Optimization of simultaneous saccharification and cofermentation process for ethanol production from poplar wood. In Proceedings of the International Conference on Agricultural and Biosystems Engineering. Hong Kong, February 20.
  • Cheng, J., H. Su, J. Zhou, W. Song, and K. Cen. 2011. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark-and photo-fermentation. International Journal of Hydrogen Energy 36:2093–101. doi:10.1016/j.ijhydene.2010.11.021.
  • Cheng, -K.-K., J.-A. Zhang, D.-H. Liu, Y. Sun, M.-D. Yang, and J.-M. Xu. 2006. Production of 1, 3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnology Letters 28:1817–21. doi:10.1007/s10529-006-9158-8.
  • Cherubini, F. 2010. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management 51:1412–21. doi:10.1016/j.enconman.2010.01.015.
  • Cherubini, F. and S. Ulgiati. 2010. Crop residues as raw materials for biorefinery systems–A LCA case study. Applied Energy 87:47–57. doi:10.1016/j.apenergy.2009.08.024.
  • Chiaramonti, D. 2007. Bioethanol: Role and production technologies. In Improvement of crop plants for industrial end uses, ed. P. Ranalli, 209–51. Florence, Italy: Springer.
  • Choi, I.S., S.G. Wi, S.-B. Kim, and H.-J. Bae. 2012. Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresource Technology 125:132–37. doi:10.1016/j.biortech.2012.08.080.
  • Chundawat, S.P., L. Chang, C. Gunawan, V. Balan, C. McMahan, and B.E. Dale. 2012. Guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Industrial Crops and Products 37:486–92. doi:10.1016/j.indcrop.2011.07.025.
  • Chundawat, S.P., B.S. Donohoe, L. Da Costa Sousa, T. Elder, U.P. Agarwal, F. Lu, J. Ralph, M.E. Himmel, V. Balan, and B.E. Dale. 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy & Environmental Science 4:973–84. doi:10.1039/c0ee00574f.
  • Chundawat, S.P., R. Vismeh, L.N. Sharma, J.F. Humpula, L. Da Costa Sousa, C.K. Chambliss, A.D. Jones, V. Balan, and B.E. Dale. 2010. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresource Technology 101:8429–38. doi:10.1016/j.biortech.2010.06.027.
  • Coppola, F., S. Bastianoni, and H. Østergård. 2009. Sustainability of bioethanol production from wheat with recycled residues as evaluated by emergy assessment. Biomass and Bioenergy 33:1626–42. doi:10.1016/j.biombioe.2009.08.003.
  • Costa, R.C. and J.R. Sodré. 2010. Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel 89:287–93. doi:10.1016/j.fuel.2009.06.017.
  • Crespo, C. 2012. Caloramator boliviensis, a new thermoanaerobe with interesting metabolic properties. Lund, Sweden: Lund University.
  • Crespo, C.F., M. Badshah, M.T. Alvarez, and B. Mattiasson. 2012. Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresource Technology 103:186–91. doi:10.1016/j.biortech.2011.10.020.
  • Cripps, R., K. Eley, D.J. Leak, B. Rudd, M. Taylor, M. Todd, S. Boakes, S. Martin, and T. Atkinson. 2009. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metabolic Engineering 11:398–408. doi:10.1016/j.ymben.2009.08.005.
  • Da Costa Sousa, L., S.P. Chundawat, V. Balan, and B.E. Dale. 2009. ‘Cradle-to-grave’assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology 20:339–47. doi:10.1016/j.copbio.2009.05.003.
  • Dagnino, E., E. Chamorro, S. Romano, F. Felissia, and M. Area. 2013. Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products 42:363–68. doi:10.1016/j.indcrop.2012.06.019.
  • Daroch, M., S. Geng, and G. Wang. 2013. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy 102:1371–81. doi:10.1016/j.apenergy.2012.07.031.
  • De Bari, I., D. Cuna, F. Nanna, and G. Braccio. 2004. Ethanol production in immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Paper read at Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals, Breckenridge, CO, May 4–7, 2003.
  • Demirbas, A. 2008. Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials 157:220–29. doi:10.1016/j.jhazmat.2008.01.024.
  • Demirbaş, A. 2005. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 27:327–37. doi:10.1080/00908310390266643.
  • Demirbas, A. and S. Karslioglu. 2007. Biodiesel production facilities from vegetable oils and animal fats. Energy Sources, Part A 29:133–41. doi:10.1080/009083190951320.
  • Deswal, D., R. Gupta, P. Nandal, and R.C. Kuhad. 2014. Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydrate Polymers 99:264–69. doi:10.1016/j.carbpol.2013.08.045.
  • Dodić, S., S. Popov, J. Dodić, J. Ranković, Z. Zavargo, and R. Jevtić Mučibabić. 2009. Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass and Bioenergy 33:822–27. doi:10.1016/j.biombioe.2009.01.002.
  • Dragone, G., B.D. Fernandes, A.A. Vicente, and J.A. Teixeira. 2010. Third generation biofuels from microalgae. In Current research, technology and education topics in applied microbiology and microbial biotechnology, ed. A. Mendez-Vilas. Barcelona, Spain: Formatex Research Center.
  • Earle, M.J., J.M. Esperança, M.A. Gilea, J.N.C. Lopes, L.P. Rebelo, J.W. Magee, K.R. Seddon, and J.A. Widegren. 2006. The distillation and volatility of ionic liquids. Nature 439:831–34. doi:10.1038/nature04451.
  • Eklund, R., M. Galbe, and G. Zacchi. 1995. The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresource Technology 52:225–29. doi:10.1016/0960-8524(95)00042-D.
  • Eksteen, J., P. Van Rensburg, R.R. Cordero Otero, and I.S. Pretorius. 2003. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Biotechnology and Bioengineering 84:639–46. doi:10.1002/bit.10797.
  • Ellis, R.P., M.P. Cochrane, M.F.B. Dale, C.M. Duffus, A. Lynn, I.M. Morrison, R.D.M. Prentice, J.S. Swanston, and S.A. Tiller. 1998. Starch production and industrial use. Journal of the Science of Food and Agriculture 77:289–311. doi:10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D.
  • El-Zawawy, W.K., M.M. Ibrahim, Y.R. Abdel-Fattah, N.A. Soliman, and M.M. Mahmoud. 2011. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydrate Polymers 84:865–71. doi:10.1016/j.carbpol.2010.12.022.
  • Erdei, B., M. Galbe, and G. Zacchi. 2013. Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass and Bioenergy 56:506–14. doi:10.1016/j.biombioe.2013.05.032.
  • Fang, H., C. Zhao, and X.-Y. Song. 2010. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresource Technology 101:4111–19. doi:10.1016/j.biortech.2010.01.078.
  • Farooqi, R. and A. Sam. 2004. Ethanol as a transportation fuel. In Centre for applied business research in energy and the environment (CABREE) climate change initiative. Edmonton, Alberta, Canada: University of Alberta.
  • Ferrari, M.D., M. Guigou, and C. Lareo. 2013. Energy consumption evaluation of fuel bioethanol production from sweet potato. Bioresource Technology 136:377–84. doi:10.1016/j.biortech.2013.03.045.
  • Ferreira, A.D., S.I. Mussatto, R.M. Cadete, C.A. Rosa, and S.S. Silva. 2011. Ethanol production by a new pentose‐fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 28:547–54. doi:10.1002/yea.v28.7.
  • Ferreira, S., A.P. Duarte, M.H. Ribeiro, J.A. Queiroz, and F.C. Domingues. 2009. Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal 45:192–200. doi:10.1016/j.bej.2009.03.012.
  • Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology 59:618–28. doi:10.1007/s00253-002-1058-9.
  • Gao, M., F. Xu, S. Li, X. Ji, S. Chen, and D. Zhang. 2010. Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosystems Engineering 106:470–75. doi:10.1016/j.biosystemseng.2010.05.011.
  • García-Cubero, M.T., M. Coca, S. Bolado, and G. González-Benito. 2010. Chemical oxidation with ozone as pre-treatment of lignocellulosic materials for bioethanol production. Chemical Engineering 211273–8.
  • García-Cubero, M.T., G. González-Benito, I. Indacoechea, M. Coca, and S. Bolado. 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology 100:1608–13. doi:10.1016/j.biortech.2008.09.012.
  • Gaykawad, S.S., Y. Zha, P.J. Punt, J.W. Van Groenestijn, L.A. Van Der Wielen, and A.J. Straathof. 2013. Pervaporation of ethanol from lignocellulosic fermentation broth. Bioresource Technology 129:469–76. doi:10.1016/j.biortech.2012.11.104.
  • Ghosh, P. and T.K. Ghose. 2003. Bioethanol in India: Recent past and emerging future. In Biotechnology in India II, eds. T.K. Ghose, P. Ghosh, S. Chand, S.K. Gupta, B.B. Lohray, K. Mazumdar-Shaw, P. Mishra, S. Nath, A.K. Panda, and S. Suryanarayan, Berlin: Springer. pp:1–27.
  • Gibreel, A., J.R. Sandercock, J. Lan, L.A. Goonewardene, R.T. Zijlstra, J.M. Curtis, and D.C. Bressler. 2009. Fermentation of barley by using Saccharomyces cerevisiae: Examination of barley as a feedstock for bioethanol production and value-added products. Applied and Environmental Microbiology 75:1363–72. doi:10.1128/AEM.01512-08.
  • Gírio, F., C. Fonseca, F. Carvalheiro, L. Duarte, S. Marques, and R. Bogel-Łukasik. 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101:4775–800. doi:10.1016/j.biortech.2010.01.088.
  • Gnansounou, E., A. Dauriat, and C. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China. Bioresource Technology 96:985–1002. doi:10.1016/j.biortech.2004.09.015.
  • Goldemberg, J. 2007. Ethanol for a sustainable energy future. Science 315:808–10. doi:10.1126/science.1137013.
  • Govumoni, S.P., S. Koti, S.Y. Kothagouni, and V.R. Linga. 2013. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydrate Polymers 91:646–50. doi:10.1016/j.carbpol.2012.08.019.
  • Graf, A. and T. Koehler. 2000. Oregon cellulose-ethanol study. In An evaluation of the potential for eth-anol production in Oregon using cellulose-based feedstocks. Portland, OR, USA: Oregon Office of Energy.
  • Gray, K.A., L. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion in Chemical Biology 10:141–46. doi:10.1016/j.cbpa.2006.02.035.
  • Gunasekaran, P. and K.C. Raj. 1999. Ethanol fermentation technology- Zymomonas mobilis. Current Science 77:56–68.
  • Gunnarsson, I.B., S.-E. Svensson, E. Johansson, D. Karakashev, and I. Angelidaki. 2014. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Industrial Crops and Products 56:231–40. doi:10.1016/j.indcrop.2014.03.010.
  • Gupta, R., P. Gigras, H. Mohapatra, V.K. Goswami, and B. Chauhan. 2003. Microbial α-amylases: A biotechnological perspective. Process Biochemistry 38:1599–616. doi:10.1016/S0032-9592(03)00053-0.
  • Gupta, R., K.K. Sharma, and R.C. Kuhad. 2009. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresource Technology 100:1214–20. doi:10.1016/j.biortech.2008.08.033.
  • Gutowski, K.E., G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D. Holbrey, and R.D. Rogers. 2003. Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. Journal of the American Chemical Society 125:6632–33. doi:10.1021/ja0351802.
  • Hamelinck, C.N., G.V. Hooijdonk, and A.P. Faaij. 2005. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-and long-term. Biomass and Bioenergy 28:384–410. doi:10.1016/j.biombioe.2004.09.002.
  • Harmsen, P., W. Huijgen, L. Bermudez, and R. Bakker. 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen: UR, Food & Biobased Research.
  • Hasunuma, T., K.S.K. Ismail, Y. Nambu, and A. Kondo. 2014. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Journal of Bioscience and Bioengineering 117:165–69. doi:10.1016/j.jbiosc.2013.07.007.
  • Hasunuma, T. and A. Kondo. 2012. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnology Advances 30:1207–18. doi:10.1016/j.biotechadv.2011.10.011.
  • Hayes, D.J. 2009. An examination of biorefining processes, catalysts and challenges. Catalysis Today 145:138–51. doi:10.1016/j.cattod.2008.04.017.
  • Haykir, N.I., E. Bahcegul, N. Bicak, and U. Bakir. 2013. Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Industrial Crops and Products 41:430–36. doi:10.1016/j.indcrop.2012.04.041.
  • Heerah, A.S., A. Mudhoo, R. Mohee, and S.K. Sharma. 2008. Steam pre-treatment of lignocellulosic wastes for biomethanogenesis: A preliminary study. Rasayan Journal of Chemistry 1:503–14.
  • Heinze, T., K. Schwikal, and S. Barthel. 2005. Ionic liquids as reaction medium in cellulose functionalization. Macromolecular Bioscience 5:520–25. doi:10.1002/(ISSN)1616-5195.
  • Hendriks, A. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100:10–18. doi:10.1016/j.biortech.2008.05.027.
  • Hernández, L. and V. Kafarov. 2009. Use of bioethanol for sustainable electrical energy production. International Journal of Hydrogen Energy 34:7041–50. doi:10.1016/j.ijhydene.2008.07.089.
  • Herrera, A., S. Téllez-Luis, J. Ramırez, and M. Vázquez. 2003. Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science 37:267–74. doi:10.1006/jcrs.2002.0510.
  • Hicks, K., R. Flores, F. Taylor, A. Mcaloon, R. Moreau, D. Johnston, G. Senske, W. Brooks, and C. Griffey. 2005. Barley: A potential feedstock for fuel ethanol in the US. Paper read at Proceedings of the Fourth International Starch Conference, Univ. of Illinois, Urbana, IL, May 25.
  • Ho, S.-H., S.-W. Huang, C.-Y. Chen, T. Hasunuma, A. Kondo, and J.-S. Chang. 2013. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology 135:191–98. doi:10.1016/j.biortech.2012.10.015.
  • Hu, Z. and Z. Wen. 2008. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal 38:369–78. doi:10.1016/j.bej.2007.08.001.
  • Huang, C., T. Xu, Y. Zhang, Y. Xue, and G. Chen. 2007. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of Membrane Science 288:1–12. doi:10.1016/j.memsci.2006.11.026.
  • Iryani, D.A., S. Kumagai, M. Nonaka, Y. Nagashima, K. Sasaki, and T. Hirajima. 2014. The hot compressed water treatment of solid waste material from the sugar industry for valuable chemical production. International Journal of Green Energy 11:577–88. doi:10.1080/15435075.2013.777909.
  • Ishola, M.M., A. Jahandideh, B. Haidarian, T. Brandberg, and M.J. Taherzadeh. 2013. Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresource Technology 133:68–73. doi:10.1016/j.biortech.2013.01.130.
  • Jackson De Moraes Rocha, G., C. Martin, I.B. Soares, A.M. Souto Maior, H.M. Baudel, and C.A. Moraes De Abreu. 2011. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass and Bioenergy 35:663–70. doi:10.1016/j.biombioe.2010.10.018.
  • Jacquet, N., C. Vanderghem, C. Blecker, and M. Paquot. 2010. Application of steam explosion for the pretreatment of the lignocellulosic raw materials. Biotechnology, Agronomy, Society and Environment 14:561–66.
  • Jayakody, L.N. 2014. Discovery of novel pathways to develop inhibitor tolerant yeast Saccharomyces cerevisiae to hot-compressed water-treated cellulose hydrolysate. Paper read at 36th Symposium on Biotechnology for Fuels and Chemicals, Clearwater Beach, FL, April 28-May 1.
  • Jayakody, L.N., N. Hayashi, and H. Kitagaki. 2013. Molecular mechanisms for detoxification of major aldehyde inhibitors for production of bioethanol by Saccharomyces cerevisiae from hot-compressed water-treated lignocellulose. In Materials and processes for energy: Communicating current research and technological development, ed. A. Mendez-Vilas. Spain: Formatex Research Center.
  • John, R.P., G. Anisha, K.M. Nampoothiri, and A. Pandey. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology 102:186–93. doi:10.1016/j.biortech.2010.06.139.
  • Jung, Y.H., I.J. Kim, H.K. Kim, and K.H. Kim. 2013. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology 132:109–14. doi:10.1016/j.biortech.2012.12.151.
  • Jung, Y.H., S. Kim, T.H. Yang, H.J. Lee, D. Seung, Y.-C. Park, J.-H. Seo, I.-G. Choi, and K.H. Kim. 2012. Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess and Biosystems Engineering 35:1497–503. doi:10.1007/s00449-012-0739-8.
  • Kamm, B. 2007. Production of platform chemicals and synthesis gas from biomass. Angewandte Chemie International Edition 46:5056–58. doi:10.1002/(ISSN)1521-3773.
  • Kang, K.E., M. Han, S.-K. Moon, H.-W. Kang, Y. Kim, Y.-L. Cha, and G.-W. Choi. 2013. Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol production from Miscanthus. Fuel 109:520–26. doi:10.1016/j.fuel.2013.03.026.
  • Kang, N.-Y., J.-N. Park, J.-E. Chin, H.B. Lee, S.-Y. Im, and S. Bai. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis α-amylase gene. Biotechnology Letters 25:1847–51. doi:10.1023/A:1026281627466.
  • Karimi, K., G. Emtiazi, and M.J. Taherzadeh. 2006a. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology 40:138–44. doi:10.1016/j.enzmictec.2005.10.046.
  • Karimi, K., S. Kheradmandinia, and M.J. Taherzadeh. 2006b. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy 30:247–53. doi:10.1016/j.biombioe.2005.11.015.
  • Karthika, K., A. Arun, and P. Rekha. 2012. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydrate Polymers 90:1038–45. doi:10.1016/j.carbpol.2012.06.040.
  • Karunanithy, C., K. Muthukumarappan, and J. Julson. 2008. Enzymatic hydrolysis of corn stover pretreated in high shear bioreactor. Paper read at ASABE Annual International Meeting, Rhode Island, June 29.
  • Katahira, S., A. Mizuike, H. Fukuda, and A. Kondo. 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose-and cellooligosaccharide-assimilating yeast strain. Applied Microbiology and Biotechnology 72:1136–43. doi:10.1007/s00253-006-0402-x.
  • Kataria, R. and S. Ghosh. 2011. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresource Technology 102:9970–75. doi:10.1016/j.biortech.2011.08.023.
  • Keller, F.A., J.E. Hamilton, and Q.A. Nguyen. 2003. Microbial pretreatment of biomass. Applied Biochemistry and Biotechnology 105:27–42. doi:10.1385/ABAB:105: 1-3.
  • Keshwani, D.R., J.J. Cheng, J.C. Burns, L. Li, and V. Chiang. 2007. Microwave pretreatment of switchgrass to enhance enzymatic hydrolysis. In Conference presentations and white papers: Biological systems engineering. St. Josph, MI: American Society of Agricultural and Biological Engineers.
  • Khambhaty, Y., K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, and P.K. Ghosh. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology 103:180–85. doi:10.1016/j.biortech.2011.10.015.
  • Khattab, S.M.R. and T. Kodaki. 2014. Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP-dependent Pichia stipitis xylitol dehydrogenase. Process Biochemistry 49:1838–42. doi:10.1016/j.procbio.2014.07.017.
  • Khawla, B.J., M. Sameh, G. Imen, F. Donyes, G. Dhouha, E.G. Raoudha, and N.-E. Oumèma. 2014. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Industrial Crops and Products 52:144–49. doi:10.1016/j.indcrop.2013.10.025.
  • Kikas, T., M. Tutt, M. Raud, M. Alaru, R. Lauk, and J. Olt. 2014. Basis of energy crop selection for biofuel production: Cellulose vs. Lignin. International Journal of Green Energy 13:49–54. doi:10.1080/15435075.2014.909359.
  • Kim, K.H. and J. Hong. 2001. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology 77:139–44. doi:10.1016/S0960-8524(00)00147-4.
  • Kim, N.-J., H. Li, K. Jung, H.N. Chang, and P.C. Lee. 2011a. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology 102:7466–69. doi:10.1016/j.biortech.2011.04.071.
  • Kim, S. and B.E. Dale. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26:361–75. doi:10.1016/j.biombioe.2003.08.002.
  • Kim, S.B., J.H. Lee, K.K. Oh, S.J. Lee, J.Y. Lee, J.S. Kim, and S.W. Kim. 2011b. Dilute acid pretreatment of barley straw and its saccharification and fermentation. Biotechnology and Bioprocess Engineering 16:725–32. doi:10.1007/s12257-010-0305-7.
  • Kim, S.R., K.-S. Lee, I.I. Kong, A. Lesmana, W.-H. Lee, J.-H. Seo, D.-H. Kweon, and Y.-S. Jin. 2013. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. Journal of Biotechnology 164:105–11. doi:10.1016/j.jbiotec.2012.12.012.
  • Koh, L.P. and J. Ghazoul. 2008. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation 141:2450–60. doi:10.1016/j.biocon.2008.08.005.
  • Koo, B.-W., H.-Y. Kim, N. Park, S.-M. Lee, H. Yeo, and I.-G. Choi. 2011. Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass and Bioenergy 35:1833–40. doi:10.1016/j.biombioe.2011.01.014.
  • Kozina, I.V., I.V. Kublanov, T.V. Kolganova, N.A. Chernyh, and E.A. Bonch-Osmolovskaya. 2010. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology 60:1372–75. doi:10.1099/ijs.0.012328-0.
  • Kreuger, E. 2012. The potential of industrial hemp (Cannabis sativa L.) for biogas production. Lund, Sweden: Lund University.
  • Kristensen, S.B.P., T. Birch-Thomsen, K. Rasmussen, L.V. Rasmussen, and O. Traoré. 2014. Cassava as an energy crop: A case study of the potential for an expansion of cassava cultivation for bioethanol production in Southern Mali. Renewable Energy 66:381–90. doi:10.1016/j.renene.2013.12.021.
  • Kristiani, A., H. Abimanyu, A. Setiawan, and F. Aulia. 2013. Effect of pretreatment process by using diluted acid to characteristic of oil Palm’s frond. Energy Procedia 32:183–89. doi:10.1016/j.egypro.2013.05.024.
  • Kumar, P., D.M. Barrett, M.J. Delwiche, and P. Stroeve. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research 48:3713–29. doi:10.1021/ie801542g.
  • Kuo, C.-H. and C.-K. Lee. 2009. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology 100:866–71. doi:10.1016/j.biortech.2008.07.001.
  • Kupiainen, L., J. Ahola, and J. Tanskanen. 2012. Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production. Bioresource Technology 116:29–35. doi:10.1016/j.biortech.2012.04.012.
  • Kurabi, A., A. Berlin, N. Gilkes, D. Kilburn, R. Bura, J. Robinson, A. Markov, A. Skomarovsky, A. Gusakov, and O. Okunev. 2005. Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated Douglas-fir by novel and commercial fungal cellulases. Applied Biochemistry and Biotechnology 121:0219–30. doi:10.1385/ABAB:121: 1-3.
  • Kwiatkowski, J.R., A.J. McAloon, F. Taylor, and D.B. Johnston. 2006. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Industrial Crops and Products 23:288–96. doi:10.1016/j.indcrop.2005.08.004.
  • Kwon, Y.-J., A.-Z. Ma, Q. Li, F. Wang, G.-Q. Zhuang, and C.-Z. Liu. 2011. Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkiaorientalis. Bioresource Technology 102:8099–104. doi:10.1016/j.biortech.2011.06.035.
  • Lang, X., D. Macdonald, and G. Hill. 2001. Recycle bioreactor for bioethanol production from wheat starch II. Fermentation and economics. Energy Sources 23:427–36. doi:10.1080/009083101300058426.
  • Laopaiboon, P., A. Thani, V. Leelavatcharamas, and L. Laopaiboon. 2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology 101:1036–43. doi:10.1016/j.biortech.2009.08.091.
  • Lau, M.W. and B.E. Dale. 2009. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proceedings of the National Academy of Sciences 106:1368–73. doi:10.1073/pnas.0812364106.
  • Lau, M.W., C. Gunawan, V. Balan, and B.E. Dale. 2010. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnology for Biofuels 3:11. doi:10.1186/1754-6834-3-11.
  • Lee, D. and S.G. Initiative. 2007. Composition of herbaceous biomass feedstocks. North Central Sun Grant Center, South Dakota State University.
  • Lee, H.J., S.J. Oh, and S.H. Moon. 2002. Removal of hardness in fermentation broth by electrodialysis. Journal of Chemical Technology and Biotechnology 77:1005–12. doi:10.1002/jctb.671.
  • Lee, H.-J., Y.-J. Seo, and J.-W. Lee. 2013. Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis. Bioresource Technology 133:87–91. doi:10.1016/j.biortech.2013.01.051.
  • Lee, H.Y., K.H. Jung, and J.H. Yeon. 2011a. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. Journal of Microbiology and Biotechnology 21:323–31.
  • Lee, J.-W., R.C. Rodrigues, and T.W. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology 100:6307–11. doi:10.1016/j.biortech.2009.06.088.
  • Lee, K.T. and C. Ofori-Boateng. 2013. Sustainability of biofuel production from oil palm biomass, Green Energy and Technology. Singapore: Springer.
  • Lee, S., Y. Oh, D. Kim, D. Kwon, C. Lee, and J. Lee. 2011b. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Applied Biochemistry and Biotechnology 164:878–88. doi:10.1007/s12010-011-9181-7.
  • Lee, S., Y. Teramoto, N. Tanaka, and T. Endo. 2007. Improvement of enzymatic saccharification of woody biomass by nano-fibrillation using extruder. Paper read at the 57th annual meeting of the Japan wood research society, Hiroshima, August 8.
  • Lee, Y.-J. 2005. Oxidation of sugarcane bagasse using a combination of hypochlorite and peroxide. Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Food Science, Chonnam National University.
  • Leustean, I. 2009. Bioethanol from lignocellulosic materials. Journal of Agroalimentary Processes Technologies 15:94–101.
  • Li, C., B. Knierim, C. Manisseri, R. Arora, H.V. Scheller, M. Auer, K.P. Vogel, B.A. Simmons, and S. Singh. 2010a. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101:4900–06. doi:10.1016/j.biortech.2009.10.066.
  • Li, W.-Z., J. Xu, J. Wang, Y.-J. Yan, X.-F. Zhu, M.-Q. Chen, and Z.-C. Tan. 2008. Studies of monosaccharide production through lignocellulosic waste hydrolysis using double acids. Energy & Fuels 22:2015–21. doi:10.1021/ef700762h.
  • Li, Y., R. Ruan, P.L. Chen, Z. Liu, X. Pan, X. Lin, Y. Liu, C. Mok, and T. Yang. 2004. Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Transactions-American Society of Agricultural Engineers 47:821–26. doi:10.13031/2013.16078.
  • Li, Z., Y. Pei, H. Wang, J. Fan, and J. Wang. 2010b. Ionic liquid-based aqueous two-phase systems and their applications in green separation processes. Trends in Analytical Chemistry 29:1336–46. doi:10.1016/j.trac.2010.07.014.
  • Lin, T.-H., C.-F. Huang, G.-L. Guo, W.-S. Hwang, and S.-L. Huang. 2012a. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresource Technology 116:314–19. doi:10.1016/j.biortech.2012.03.089.
  • Lin, Y. and S. Tanaka. 2006. Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology 69:627–42. doi:10.1007/s00253-005-0229-x.
  • Lin, Y., W. Zhang, C. Li, K. Sakakibara, S. Tanaka, and H. Kong. 2012b. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy 47:395–401. doi:10.1016/j.biombioe.2012.09.019.
  • Liu, L., M. Ju, W. Li, and Q. Hou. 2013a. Dissolution of cellulose from AFEX-pretreated Zoysia japonica in AMIMCl with ultrasonic vibration. Carbohydrate Polymers 98:412–20. doi:10.1016/j.carbpol.2013.06.030.
  • Liu, Z., S. Padmanabhan, K. Cheng, P. Schwyter, M. Pauly, A.T. Bell, and J.M. Prausnitz. 2013b. Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology 135:23–29. doi:10.1016/j.biortech.2012.10.133.
  • Lü, H., M. Ren, M. Zhang, and Y. Chen. 2013. Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent. Chinese Journal of Chemical Engineering 21:551–57. doi:10.1016/S1004-9541(13)60508-X.
  • Lu, X., B. Xi, Y. Zhang, and I. Angelidaki. 2011. Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technology 102:7937–40. doi:10.1016/j.biortech.2011.06.065.
  • Lu, X., K. Yamauchi, N. Phaiboonsilpa, and S. Saka. 2009a. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science 55:367–75. doi:10.1007/s10086-009-1040-6.
  • Lu, X., Y. Zhang, and I. Angelidaki. 2009b. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresource Technology 100:3048–53. doi:10.1016/j.biortech.2009.01.008.
  • Lu, X., Y. Zhang, J. Yang, and Y. Liang. 2007. Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chemical Engineering & Technology 30:938–44. doi:10.1002/(ISSN)1521-4125.
  • Lu, Y., B. Yang, D. Gregg, J.N. Saddler, and S.D. Mansfield. 2002. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology 98–100:641–54. doi:10.1385/ABAB:98-100: 1-9.
  • Luterbacher, J.S., J.W. Tester, and L.P. Walker. 2010. High-solids biphasic CO2–H2O pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering 107:451–60. doi:10.1002/bit.22823.
  • Luterbacher, J.S., J.W. Tester, and L.P. Walker. 2012. Two-temperature stage biphasic CO2–H2O pretreatment of lignocellulosic biomass at high solid loadings. Biotechnology and Bioengineering 109:1499–507. doi:10.1002/bit.24417.
  • Lynd, L.R. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment 21:403–65. doi:10.1146/annurev.energy.21.1.403.
  • Matsushika, A., H. Inoue, T. Kodaki, and S. Sawayama. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Applied Microbiology and Biotechnology 84:37–53. doi:10.1007/s00253-009-2101-x.
  • Moe, S.T., K.K. Janga, T. Hertzberg, M.-B. Hägg, K. Øyaas, and N. Dyrset. 2012. Saccharification of lignocellulosic biomass for biofuel and biorefinery applications–a renaissance for the concentrated acid hydrolysis?. Energy Procedia 20:50–58. doi:10.1016/j.egypro.2012.03.007.
  • Mohamad, A.I.A.S.E. 2011. Bioethanol from second generation feedstock (Lignocellulose Biomass). Interdisciplinary Journal of Contemporary Research In Business 3:919–35.
  • Moon, H.C., I. Song, and D. Kim. 2010. Concentrated acid impregnation, hydrolysis, and fermentation of reed to ethanol. International Journal of Green Energy 7:475–84. doi:10.1080/15435075.2010.515190.
  • Moore, J. 2009. Microalgae from biodiesel to bioethanol and beyond. In Biofuels and bio-based carbon mitigation. http://snrecmitigation.wordpress.com/2009/03/23/microalgae-from-biodiesel-to-bioethanol-and-beyond/.
  • Moshi, A.P., C.F. Crespo, M. Badshah, K.M. Hosea, A.M. Mshandete, E. Elisante, and B. Mattiasson. 2014a. Characterisation and evaluation of a novel feedstock, Manihot glaziovii, Mueller. Arg, for production of bioenergy carriers: Bioethanol and biogas. Bioresource Technology 172:58–67. doi:10.1016/j.biortech.2014.08.084.
  • Moshi, A.P., C.F. Crespo, M. Badshah, K.M. Hosea, A.M. Mshandete, and B. Mattiasson. 2014b. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System. Bioresource Technology 156:348–56. doi:10.1016/j.biortech.2013.12.082.
  • Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96:673–86. doi:10.1016/j.biortech.2004.06.025.
  • Mosier, N.S., A. Sarikaya, C.M. Ladisch, and M.R. Ladisch. 2001. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress 17:474–80. doi:10.1021/bp010028u.
  • Moutta, R., A.K. Chandel, R. Rodrigues, M. Silva, G. Rocha, and S. Silva. 2012. Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Technology 14:53–60. doi:10.1007/s12355-011-0116-y.
  • Narayanaswamy, N., A. Faik, D.J. Goetz, and T. Gu. 2011. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresource Technology 102:6995–7000. doi:10.1016/j.biortech.2011.04.052.
  • Nazarpour, F., D.K. Abdullah, N. Abdullah, N. Motedayen, and R. Zamiri. 2013. Biological pretreatment of rubberwood with ceriporiopsis subvermispora for enzymatic hydrolysis and bioethanol production. BioMed Research International 2013:1–9.
  • Negro, M.J., P. Manzanares, I. Ballesteros, J.M. Oliva, A. Cabañas, and M. Ballesteros. 2003. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. In Biotechnology for fuels and chemicals, eds. B.H. Davison, J.W. Lee, M. Finkelstein, and J.D. McMillan, 87–100. New York: Humana Press.
  • Neves, M.A.D. 2006. Bioethanol production from wheat milling by-products. PhD Thesis, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
  • Nguyen, T.H.M. 2012. Bioethanol production from marine algae biomass: Prospect and troubles. Journal of Vietnamese Environment 3:25–29.
  • Nigam, P.S. and A. Singh. 2011. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science 37:52–68. doi:10.1016/j.pecs.2010.01.003.
  • Nikolić, S., L. Mojović, M. Rakin, and D. Pejin. 2009. Bioethanol production from corn meal by simultaneous enzymatic saccharification and fermentation with immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Fuel 88:1602–07. doi:10.1016/j.fuel.2008.12.019.
  • Niu, H., D. Leak, N. Shah, and C. Kontoravdi. 2014. Metabolic characterization and modelling of fermentation process of an engineered Geobacillus thermoglucosidasius strain for bioethanol production with gas stripping. Chemical Engineering Science 127:138–49.
  • O’Brien, D.J., L.H. Roth, and A.J. McAloon. 2000. Ethanol production by continuous fermentation–pervaporation: A preliminary economic analysis. Journal of Membrane Science 166:105–11. doi:10.1016/S0376-7388(99)00255-0.
  • Ofori-Boateng, C. and K.T. Lee. 2014a. Same-vessel enzymatic saccharification and fermentation of organosolv/H2O2 pretreated oil palm (Elaeis guineensis Jacq.) fronds for bioethanol production: Optimization of process parameters. Energy Conversion and Management 78:421–30. doi:10.1016/j.enconman.2013.10.075.
  • Ofori-Boateng, C. and K.T. Lee. 2014b. Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel 119:285–91. doi:10.1016/j.fuel.2013.11.064.
  • Öhgren, K., R. Bura, G. Lesnicki, J. Saddler, and G. Zacchi. 2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry 42:834–39. doi:10.1016/j.procbio.2007.02.003.
  • Orlygsson, J., M.A. Sigurbjornsdottir, and H.E. Bakken. 2010. Bioprospecting thermophilic ethanol and hydrogen producing bacteria from hot springs in Iceland. Icelandic Agricultural Sciences 23:73–85.
  • Pan, X., N. Gilkes, and J.N. Saddler. 2006. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung 60:398–401. doi:10.1515/HF.2006.062.
  • Pandey, A., P. Nigam, C. Soccol, V. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnology and Applied Biochemistry 31:135–52. doi:10.1042/BA19990073.
  • Panneerselvam, A., R.R. Sharma-Shivappa, P. Kolar, D.A. Clare, and T. Ranney. 2013a. Hydrolysis of ozone pretreated energy grasses for optimal fermentable sugar production. Bioresource Technology 148:97–104. doi:10.1016/j.biortech.2013.08.119.
  • Panneerselvam, A., R.R. Sharma-Shivappa, P. Kolar, T. Ranney, and S. Peretti. 2013b. Potential of ozonolysis as a pretreatment for energy grasses. Bioresource Technology 148:242–48. doi:10.1016/j.biortech.2013.08.129.
  • Park, C.Y., Y.W. Ryu, and C. Kim. 2001. Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide. Korean Journal of Chemical Engineering 18:475–78. doi:10.1007/BF02698293.
  • Park, J.M., B.-R. Oh, J.-W. Seo, W.-K. Hong, A. Yu, J.-H. Sohn, and C.H. Kim. 2013. Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology 170:1807–14. doi:10.1007/s12010-013-0314-z.
  • Park, J.-Y., R. Shiroma, M.I. Al-Haq, Y. Zhang, M. Ike, Y. Arai-Sanoh, A. Ida, M. Kondo, and K. Tokuyasu. 2010. A novel lime pretreatment for subsequent bioethanol production from rice straw–calcium capturing by carbonation (CaCCO) process. Bioresource Technology 101:6805–11. doi:10.1016/j.biortech.2010.03.098.
  • Pei, Y., J. Wang, L. Liu, K. Wu, and Y. Zhao. 2007. Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. Journal of Chemical & Engineering Data 52:2026–31. doi:10.1021/je700315u.
  • Peng, X., Y. Hu, Y. Liu, C. Jin, and H. Lin. 2010. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates. Journal of Natural Gas Chemistry 19:81–85. doi:10.1016/S1003-9953(09)60027-X.
  • Percival Zhang, Y.-H., M.E. Himmel, and J.R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances 24:452–81. doi:10.1016/j.biotechadv.2006.03.003.
  • Perlack, R.D., L.L. Wright, A.F. Turhollow, R.L. Graham, B.J. Stokes, and D.C. Erbach. 2005. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. DTIC Document.
  • Pimentel, D. and T.W. Patzek. 2005. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research 14:65–76. doi:10.1007/s11053-005-4679-8.
  • Pongsawatmanit, R., T. Temsiripong, and T. Suwonsichon. 2007. Thermal and rheological properties of tapioca starch and xyloglucan mixtures in the presence of sucrose. Food Research International 40:239–48. doi:10.1016/j.foodres.2006.10.013.
  • Prokofeva, M.I., N.A. Kostrikina, T.V. Kolganova, T.P. Tourova, A.M. Lysenko, A.V. Lebedinsky, and E.A. Bonch-Osmolovskaya. 2009. Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 59:3116–22. doi:10.1099/ijs.0.010355-0.
  • Puentes, J.G., S. Mateo, B.G. Fonseca, I.C. Roberto, S. Sánchez, and A.J. Moya. 2013. Monomeric carbohydrates production from olive tree pruning biomass: Modeling of dilute acid hydrolysis. Bioresource Technology 149:149–54. doi:10.1016/j.biortech.2013.09.046.
  • Qin, L., Z.-H. Liu, B.-Z. Li, B.E. Dale, and Y.-J. Yuan. 2012. Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource Technology 112:319–26. doi:10.1016/j.biortech.2012.02.134.
  • Qiu, Z., G.M. Aita, and M.S. Walker. 2012. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresource Technology 117:251–56. doi:10.1016/j.biortech.2012.04.070.
  • Rahman, S., J. Choudhury, and A. Ahmad. 2006. Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochemical Engineering Journal 30:97–103. doi:10.1016/j.bej.2006.02.009.
  • Rahman, S., J. Choudhury, A. Ahmad, and A. Kamaruddin. 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology 98:554–59. doi:10.1016/j.biortech.2006.02.016.
  • Rao, R.S., C.P. Jyothi, R. Prakasham, P. Sarma, and L.V. Rao. 2006. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource Technology 97:1974–78. doi:10.1016/j.biortech.2005.08.015.
  • Razmovski, R. and V. Vučurović. 2012. Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 92:1–8. doi:10.1016/j.fuel.2011.07.046.
  • RFA. 2013. Ethanol industry outlook. Renewable Fuels Association 2013. http://ethanolrfa.org/page/-/PDFs/RFA%202013%20Ethanol%20Industry%20Outlook.pdf?nocdn=1. (accessed January 23, 2013).
  • Roberto, I.C., S.I. Mussatto, and R.C. Rodrigues. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products 17:171–76. doi:10.1016/S0926-6690(02)00095-X.
  • Robertson, G.H., D.W. Wong, C.C. Lee, K. Wagschal, M.R. Smith, and W.J. Orts. 2006. Native or raw starch digestion: A key step in energy efficient biorefining of grain. Journal of Agricultural and Food Chemistry 54:353–65. doi:10.1021/jf051883m.
  • Rocha, G., A. Gonçalves, B. Oliveira, E. Olivares, and C. Rossell. 2012. Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Industrial Crops and Products 35:274–79. doi:10.1016/j.indcrop.2011.07.010.
  • Rodrigues, R.D.C.L., G.J. Rocha, D. Rodrigues Jr., M.D.G.A.A. Felipe, and A. Pessoa Jr. 2010. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresource Technology 101:1247–53. doi:10.1016/j.biortech.2009.09.034.
  • Rodríguez, L., M. Toro, F. Vazquez, M. Correa-Daneri, S. Gouiric, and M. Vallejo. 2010. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. International Journal of Hydrogen Energy 35:5914–17. doi:10.1016/j.ijhydene.2009.12.112.
  • Romaní, A., G. Garrote, I. Ballesteros, and M. Ballesteros. 2013. Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel 111:66–74. doi:10.1016/j.fuel.2013.04.076.
  • Ruangmee, A. and C. Sangwichien. 2013. Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Conversion and Management 73:381–88. doi:10.1016/j.enconman.2013.05.035.
  • Ruiz, E., C. Cara, P. Manzanares, M. Ballesteros, and E. Castro. 2008. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and Microbial Technology 42:160–66. doi:10.1016/j.enzmictec.2007.09.002.
  • Ruiz, H.A., D.P. Silva, D.S. Ruzene, L.F. Lima, A.A. Vicente, and J.A. Teixeira. 2012. Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain–Effect of process conditions. Fuel 95:528–36. doi:10.1016/j.fuel.2011.10.060.
  • Saha, B. and R. Bothast. 1999. Enzymology of xylan degradation. Paper read at American Chemical Society Symposium Series May 7.
  • Saha, B.C. 2004. Lignocellulose biodegradation and applications in biotechnology. Paper read at ACS symposium series, April 1.
  • Saha, B.C. and M.A. Cotta. 2010. Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol. New Biotechnology 27:10–16. doi:10.1016/j.nbt.2009.10.005.
  • Saha, B.C., L.B. Iten, M.A. Cotta, and Y.V. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry 40:3693–700. doi:10.1016/j.procbio.2005.04.006.
  • Saha, B.C., T. Yoshida, M.A. Cotta, and K. Sonomoto. 2013. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products 44:367–72. doi:10.1016/j.indcrop.2012.11.025.
  • San Martín-Davison, J., M. Ballesteros, P. Manzanares, X. Petit-Breuilh Sepúlveda, and A. Vergara-Fernández. 2014. Effects of temperature on steam explosion pretreatment of poplar hybrids with different lignin contents in bioethanol production. International Journal of Green Energy 12:832–42.
  • Sanchez, O.J. and C.A. Cardona. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99:5270–95. doi:10.1016/j.biortech.2007.11.013.
  • Saravanakumar, K., P. Senthilraja, and K. Kathiresan. 2013. Bioethanol production by mangrove-derived marine yeast, Sacchromyces cerevisiae. Journal of King Saud University-Science 25:121–27. doi:10.1016/j.jksus.2012.12.005.
  • Sarkar, N., S.K. Ghosh, S. Bannerjee, and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37:19–27. doi:10.1016/j.renene.2011.06.045.
  • Sassner, P., C.-G. Mårtensson, M. Galbe, and G. Zacchi. 2008. Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology 99:137–45. doi:10.1016/j.biortech.2006.11.039.
  • Scordia, D., S.L. Cosentino, J.-W. Lee, and T.W. Jeffries. 2011. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass and Bioenergy 35:3018–24. doi:10.1016/j.biombioe.2011.03.046.
  • Sediawan, W.B., H. Sulistyo, and M. Hidayat. 2011. Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: Effect of catalyst concentration. Bioresource Technology 102:2062–67. doi:10.1016/j.biortech.2010.09.084.
  • Senthilraja, K.K. and P.K. Saravanakumar. 2011. Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. International Multidisciplinary Research Journal 1:19–24.
  • Senthilraja, P., K. Kathiresan, and K. Saravanakumar. 2011. Comparative analysis of bioethanol production by different strains of immobilized marine yeast. Journal of Yeast Fungal Research 2:113–16.
  • Shapouri, H. and M.E. Salassi. 2006. Economic feasibility of ethanol production from sugar in the United States. Washington, DC: USDA.
  • Shaw, A.J., K.K. Podkaminer, S.G. Desai, J.S. Bardsley, S.R. Rogers, P.G. Thorne, D.A. Hogsett, and L.R. Lynd. 2008. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings of the National Academy of Sciences 105:13769–74. doi:10.1073/pnas.0801266105.
  • Shi, J., R.R. Sharma-Shivappa, M. Chinn, and N. Howell. 2009. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy 33:88–96. doi:10.1016/j.biombioe.2008.04.016.
  • Shigechi, H., Y. Fujita, J. Koh, M. Ueda, H. Fukuda, and A. Kondo. 2004. Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochemical Engineering Journal 18:149–53. doi:10.1016/j.bej.2003.08.003.
  • Shrestha, P., M. Rasmussen, S.K. Khanal, A.L. Pometto Iii, and J. Van Leeuwen. 2008. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. Journal of Agricultural and Food Chemistry 56:3918–24. doi:10.1021/jf0728404.
  • Shubhaneel, N., S. Ghosh, S. Haldar, A. Ganguly, and P.K. Chatterjee. 2013. Acid catalyzed auto-hydrolysis of Parthenium hysterophorus L. for production of xylose for lignocellulosic ethanol. International Journal of Emerging Technology and Advanced Engineering 3:187–92.
  • Silverstein, R.A., Y. Chen, R.R. Sharma-Shivappa, M.D. Boyette, and J. Osborne. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology 98:3000–11. doi:10.1016/j.biortech.2006.10.022.
  • Sindhu, R., M. Kuttiraja, P. Binod, R.K. Sukumaran, and A. Pandey. 2014. Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Industrial Crops and Products 52:169–76. doi:10.1016/j.indcrop.2013.10.021.
  • Singh, R., A. Shukla, S. Tiwari, and M. Srivastava. 2014. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews 32:713–28. doi:10.1016/j.rser.2014.01.051.
  • Söderström, J., M. Galbe, and G. Zacchi. 2005. Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. Journal of Wood Chemistry and Technology 25:187–202. doi:10.1080/02773810500191807.
  • Söderström, J., L. Pilcher, M. Galbe, and G. Zacchi. 2002. Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Applied Biochemistry and Biotechnology 98–100:5–22. doi:10.1385/ABAB:98-100: 1-9.
  • Söderström, J., L. Pilcher, M. Galbe, and G. Zacchi. 2003. Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy 24:475–86. doi:10.1016/S0961-9534(02)00148-4.
  • Srichuwong, S., T. Orikasa, J. Matsuki, T. Shiina, T. Kobayashi, and K. Tokuyasu. 2012. Sweet potato having a low temperature-gelatinizing starch as a promising feedstock for bioethanol production. Biomass and Bioenergy 39:120–27. doi:10.1016/j.biombioe.2011.12.023.
  • Srinivasan, N. and L.-K. Ju. 2010. Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresource Technology 101:9785–91. doi:10.1016/j.biortech.2010.07.069.
  • Srivastava, N., R. Rawat, H. Singh Oberoi, and P.W. Ramteke. 2014. A review on fuel ethanol production from Lignocellulosic biomass. International Journal of Green Energy 12:949–60.
  • Sudiyani, Y., D. Styarini, E. Triwahyuni, K.C. Sembiring, Y. Aristiawan, H. Abimanyu, and M.H. Han. 2013. Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot–scale unit. Energy Procedia 32:31–38. doi:10.1016/j.egypro.2013.05.005.
  • Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83:1–11. doi:10.1016/S0960-8524(01)00212-7.
  • Suriyachai, N., K. Weerasaia, N. Laosiripojana, V. Champreda, and P. Unrean. 2013. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresource Technology 142:171–78. doi:10.1016/j.biortech.2013.05.003.
  • Svetlitchnyi, V.A., O. Kensch, D.A. Falkenhan, S.G. Korseska, N. Lippert, M. Prinz, J. Sassi, A. Schickor, and S. Curvers. 2013. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnology for Biofuels 6:31–46.
  • Swatloski, R.P., S.K. Spear, J.D. Holbrey, and R.D. Rogers. 2002. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society 124:4974–75. doi:10.1021/ja025790m.
  • Taherzadeh, M.J. 1999. Ethanol from lignocellulose: Physiological effects of inhibitors and fermentation strategies. Gothenburg, Sweden: Chalmers University of Technology.
  • Taherzadeh, M.J. and K. Karimi. 2007. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources 2:472–99.
  • Taherzadeh, M.J. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9:1621–51. doi:10.3390/ijms9091621.
  • Tamanini, C. and M.C. De Oliveira Hauly. 2004. Agroindustrial waste for biotechnological production of xylitol. Semina: Agricultural Sciences 25:315–30.
  • Tamburini, E., T. Bernardi, G. Castaldelli, G. Tumiatti, and S. Ferro. 2011. Green electrochemical approach for delignification of wheat straw in second-generation bioethanol production. Energy & Environmental Science 4:551–57. doi:10.1039/C0EE00226G.
  • Tan, H.T., K.T. Lee, and A.R. Mohamed. 2011. Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM] Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydrate Polymers 83:1862–68. doi:10.1016/j.carbpol.2010.10.052.
  • Taniguchi, M., H. Suzuki, D. Watanabe, K. Sakai, K. Hoshino, and T. Tanaka. 2005. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering 100:637–43. doi:10.1263/jbb.100.637.
  • Tatijarern, P., S. Prasertwasu, T. Komalwanich, T. Chaisuwan, A. Luengnaruemitchai, and S. Wongkasemjit. 2013. Capability of Thai Mission grass (Pennisetum polystachyon) as a new weedy lignocellulosic feedstock for production of monomeric sugar. Bioresource Technology 143:423–30. doi:10.1016/j.biortech.2013.05.128.
  • Tengborg, C., M. Galbe, and G. Zacchi. 2001. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme and Microbial Technology 28:835–44. doi:10.1016/S0141-0229(01)00342-8.
  • Tengborg, C., K. Stenberg, M. Galbe, G. Zacchi, S. Larsson, E. Palmqvist, and B. Hahn-Hägerdal. 1998. Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Applied Biochemistry and Biotechnology 70–72:3–15. doi:10.1007/BF02920119.
  • Teramoto, Y., S.-H. Lee, and T. Endo. 2008. Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology 99:8856–63. doi:10.1016/j.biortech.2008.04.049.
  • Thatoi, H., P.K. Dash, S. Mohapatra, and M.R. Swain. 2014. Bioethanol production from tuber crops using fermentation technology: A review. International Journal of Sustainable Energy 35:1–26. doi:10.1080/14786451.2014.918616.
  • Tomás-Pejó, E., N. Bonander, and L. Olsson. 2014. Industrial yeasts strains for biorefinery solutions: Constructing and selecting efficient barcoded xylose fermenting strains for ethanol. Biofuels, Bioproducts and Biorefining 8:626–34. doi:10.1002/bbb.2014.8.issue-5.
  • Tomas-Pejo, E., J. Oliva, and M. Ballesteros. 2008. Realistic approach for full-scale bioethanol production from lignocellulose: A review. Journal of Scientific and Industrial Research 67:874.
  • Travaini, R., M.D.M. Otero, M. Coca, R. Da-Silva, and S. Bolado. 2013. Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology 133:332–39. doi:10.1016/j.biortech.2013.01.133.
  • Trinh, L.T.P., Y.J. Lee, J.-W. Lee, H.-J. Bae, and H.-J. Lee. 2013. Recovery of an ionic liquid [BMIM] Cl from a hydrolysate of lignocellulosic biomass using electrodialysis. Separation and Purification Technology 120:86–91. doi:10.1016/j.seppur.2013.09.025.
  • Ülgen, K.Ö., B. Saygılı, Z.İ. Önsan, and B. Kırdar. 2002. Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB. Process Biochemistry 37:1157–68. doi:10.1016/S0032-9592(01)00333-8.
  • Vane, L.M. 2008. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels, Bioproducts and Biorefining 2:553–88. doi:10.1002/bbb.v2:6.
  • Varanasi, P., P. Singh, M. Auer, P.D. Adams, B.A. Simmons, and S. Singh. 2013. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels 6:14. doi:10.1186/1754-6834-6-14.
  • Varga, E., K. Réczey, and G. Zacchi. 2004. Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology 114:509–24. doi:10.1385/ABAB:114: 1-3.
  • Vessia, Ø. 2005. Biofuels from lignocellulosic material-In the Norwegian context 2010–Technology, potential and costs. Norwegian University of of Science and Technology.
  • Vyas, P.V., B. Shah, G. Trivedi, P. Gaur, P. Ray, and S. Adhikary. 2001. Separation of inorganic and organic acids from glyoxal by electrodialysis. Desalination 140:47–54. doi:10.1016/S0011-9164(01)00353-8.
  • Wan, C. and Y. Li. 2010. Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme and Microbial Technology 47:31–36. doi:10.1016/j.enzmictec.2010.04.001.
  • Wang, L., Z. Luo, and A. Shahbazi. 2013. Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial Crops and Products 42:280–91. doi:10.1016/j.indcrop.2012.06.005.
  • Wang, X., X. Liu, and G. Wang. 2011. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. Journal of Integrative Plant Biology 53:246–52. doi:10.1111/j.1744-7909.2010.01024.x.
  • Wang, Z. and J.J. Cheng. 2011. Lime pretreatment of coastal bermudagrass for bioethanol production. Energy & Fuels 25:1830–36. doi:10.1021/ef2000932.
  • Wi, S.G., I.S. Choi, K.H. Kim, H.M. Kim, and H.-J. Bae. 2013. Bioethanol production from rice straw by popping pretreatment. Biotechnology for Biofuels 6:166. doi:10.1186/1754-6834-6-166.
  • Wi, S.G., B.Y. Chung, Y.G. Lee, D.J. Yang, and H.-J. Bae. 2011. Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. Bioresource Technology 102:5788–93. doi:10.1016/j.biortech.2011.02.031.
  • Williams, K.C. 2006. Subcritical water and chemical pretreatments of cotton stalk for the production of ethanol. Raleigh, NC: North Carolina State University.
  • Wu, L., Y. Li, M. Arakane, M. Ike, M. Wada, Y. Terajima, S. Ishikawa, and K. Tokuyasu. 2011. Efficient conversion of sugarcane stalks into ethanol employing low temperature alkali pretreatment method. Bioresource Technology 102:11183–88. doi:10.1016/j.biortech.2011.09.081.
  • Wyman, C. 1996. Handbook on bioethanol: Production and utilization, Applied Energy Technology Series. Boca Raton, FL: CRC press.
  • Wyman, C.E. and N.D. Hinman. 1990. Ethanol. Applied Biochemistry and Biotechnology 24– 25:735–53. doi:10.1007/BF02920291.
  • Xiang, Q., J.S. Kim, and Y. Lee. 2003a. A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Applied Biochemistry and Biotechnology 106:337–52. doi:10.1385/ABAB:106: 1-3.
  • Xiang, Q., Y. Lee, P.O. Pettersson, and R.W. Torget. 2003b. Heterogeneous aspects of acid hydrolysis of α-cellulose. Applied Biochemistry and Biotechnology 105– 108:505–14. doi:10.1385/ABAB:107: 1-3:505.
  • Xiong, J., J. Ye, W. Liang, and P. Fan. 2000. Influence of microwave on the ultrastructure of cellulose I. Journal of South China University Technology 28:84–89.
  • Xu, C., F. Ma, X. Zhang, and S. Chen. 2010a. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. Journal of Agricultural and Food Chemistry 58:10893–98. doi:10.1021/jf1021187.
  • Xu, J., J.J. Cheng, R.R. Sharma-Shivappa, and J.C. Burns. 2010b. Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology 101:2900–03. doi:10.1016/j.biortech.2009.12.015.
  • Yamada, R., Y. Bito, T. Adachi, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo. 2009. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme and Microbial Technology 44:344–49. doi:10.1016/j.enzmictec.2009.01.001.
  • Yang, B. and C.E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining 2:26–40. doi:10.1002/(ISSN)1932-1031.
  • Yang, J., J. Jiang, N. Zhang, M. Wei, and J. Zhao. 2014. Effects of different pretreatment methods on the enzymatic hydrolysis of Oak Shell. International Journal of Green Energy. http://dx.doi.org/10.1080/15435075.2014.884497.
  • Yang, S.-T. 2011. Bioprocessing for value-added products from renewable resources: New technologies and applications. The Netherlands: Elsevier.
  • Yao, S. and M.J. Mikkelsen. 2010. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Applied Microbiology and Biotechnology 88:199–208. doi:10.1007/s00253-010-2703-3.
  • Yoon, J.J., Y.J. Kim, S.H. Kim, H.J. Ryu, J.Y. Choi, G.S. Kim, and M.K. Shin. 2010. Production of polysaccharides and corresponding sugars from red seaweed. Advanced Materials Research 93:463–66. doi:10.4028/www.scientific.net/AMR.93-94.463.
  • Yoosin, S. and C. Sorapipatana. 2007. A study of ethanol production cost for gasoline substitution in Thailand and its competitiveness. Thammasat International Journal of Science and Technology 12:69–80.
  • Yu, J., J. Zhang, J. He, Z. Liu, and Z. Yu. 2009. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology 100:903–08. doi:10.1016/j.biortech.2008.07.025.
  • Yu, Y., X. Lou, and H. Wu. 2007. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy & Fuels 22:46–60. doi:10.1021/ef700292p.
  • Zavrel, M., D. Bross, M. Funke, J. Büchs, and A.C. Spiess. 2009. High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresource Technology 100:2580–87. doi:10.1016/j.biortech.2008.11.052.
  • Zhang, D., Y.L. Ong, Z. Li, and J.C. Wu. 2012. Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chemical Engineering Journal 181:636–42. doi:10.1016/j.cej.2011.12.030.
  • Zhang, W. and A. Geng. 2012. Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnology for Biofuels 5:46. doi:10.1186/1754-6834-5-46.
  • Zhang, W., Y. Lin, Q. Zhang, X. Wang, D. Wu, and H. Kong. 2013. Optimisation of simultaneous saccharification and fermentation of wheat straw for ethanol production. Fuel 112:331–37. doi:10.1016/j.fuel.2013.05.064.
  • Zhang, X., C. Xu, and H. Wang. 2007. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. Journal of Bioscience and Bioengineering 104:149–51. doi:10.1263/jbb.104.149.
  • Zhang, Y. and H. Chen. 2012. Multiscale modeling of biomass pretreatment for optimization of steam explosion conditions. Chemical Engineering Science 75:177–82. doi:10.1016/j.ces.2012.02.052.
  • Zhang, Y.H.P. and L.R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 88:797–824. doi:10.1002/bit.20282.
  • Zhao, X., K. Cheng, and D. Liu. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 82:815–27. doi:10.1007/s00253-009-1883-1.
  • Zheng, Y., H.-M. Lin, and G.T. Tsao. 1998. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress 14:890–96. doi:10.1021/bp980087g.
  • Zheng, Y., H.-M. Lin, J. Wen, N. Cao, X. Yu, and G.T. Tsao. 1995. Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnology Letters 17:845–50. doi:10.1007/BF00129015.
  • Zheng, Y., Z. Pan, and R. Zhang. 2009. Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural & Biological Engineering 2:51–68.
  • Zheng, Y. and G.T. Tsao. 1996. Avicel hydrolysis by cellulase enzyme in supercritical CO2. Biotechnology Letters 18:451–54. doi:10.1007/BF00143469.
  • Zhu, J. and X. Pan. 2010. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology 101:4992–5002. doi:10.1016/j.biortech.2009.11.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.