766
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells

References

  • Agarwala, S., C. K. N. Peh, and G. W. Ho. 2011. Highly stable quasi-solid-state dye sensitized solar cell: Improved performance using diphenylamine in filler free KI and LiI electrolyte. ACS Applied Material Interfaces 3 (7):2383–91.
  • Ahmad, I., U. Khan, and Y. K. Gun’ko. 2011. Graphene, carbon nanotube and ionic liquid mixtures: Towards new quasi-solid state electrolytes for dye sensitized solar cells. Journal of Materials Chemistry 21:16990–6.
  • Ahmad, S, J. -H. Yum, Z. Xianxi, M. Grätzel, H.-J. Butt, and M. K. Nazeeruddin. 2010. Dye-sensitized solar cells based on poly (3,4 ethylenedioxythiophene) counter electrode derived from ionic liquids. Journal of Materials Chemistry 20:1654–8.
  • Ahmad, S., M. Deepa, and S. Singh. 2007. Electrochemical synthesis and surface characterization of poly (3,4-ethylenedioxythiophene) films grown in an ionic liquid. Langmuir 23(23):11430–3.
  • Akhtar, M. S., H.-C. Lee, K.-J. Kim, and O.-B. Yang. 2006. Quasi-solid state dye sensitized solar cell based on Poly (Acrylonitrile-co-Methacrylonitrile)-Silica gel electrolyte. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 2. DOI: 10.1109/WCPEC.2006.279784.
  • Aldakov, D., C. Querner, Y. Kervella, B. Jousselme, R. Demardille, E. Rossitto, P. Reiss, and A. Pron. 2007. Oligothiophene functionalized CdSe NCs: Preparation and electrochemical properties. Microchimica Acta 160:335–44.
  • Alivisatos, A. P. 1996. Semiconductor clusters, nanocrystals and quantum dots. Science 271(5251):933–7.
  • Archana, P. S., R. Jose, T. M. Jin, C. Vijila, M. M. Yusoff, and S. Ramakrishna. 2010. Structural and electrical properties of Nb-doped anatase TiO2 NWs by electrospinning. Journal of the American Ceramic Society 93:4096–102.
  • Ardalan, P., T. P. Brennan, J. R. Bakke, H. B. R. Lee, I.-K. Ding, M. D. McGehee, and S. F. Bent. 2011. Effects of self-assembled monolayers on solid-state CdS quantum dot sensitized solar cells. American Chemical Society Nano 5:1495–504.
  • Argazzi, R., N. Y. M. Iha, H. Zabri, F. Odobel, and C. A. Bignozzi. 2004. Design of molecular dyes for application in photo-electro-chemical and electro-chromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews 248:1299–316.
  • Aribia, K. B., T. Moehl, S. M. Zakeeruddin, and M. Grätzel. 2013. Tridentate co-complexes as alternative redox couples for high-efficiency dye-sensitized solar cells. Chemical Science 4:454–9.
  • Arici, E., D. Meissner, and N. S. Sariciftci. 2004. Hybrid solar cells. In: Encyclopedia of Nanotechnology, ed. H. S. Nalwa, Vol. 3. Stevenson Ranch, CA: American Scientific Publishers, pp. 929–44.
  • Arici, E., N. S. Sariciftci, and D. Meissner. 2003. Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Advanced Functional Materials 13(2):165–71.
  • Arkhipov, V., P. Heremans, and H. Bassler. 2003. Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Applied Physics Letters 82 (25):4605–7.
  • Armand, M. B. 1987. Polymer electrolyte reviews, ed. J. R. Maccallum and C. A. Vincent CA, London, UK: Elsevier.
  • Arunkumar, E., C. Forbes, and B. D. Smith. 2005. Improving the properties of organic dyes by molecular encapsulation. European Journal of Organic Chemistry 2005(19):4051–9.
  • Atwater, H. A., and A. Polman. 2010. Plasmonics for improved photovoltaic devices. Nature Materials 9:865. doi: 10.1038/nmat2866
  • Bach, U., D. Lupo, P. Comte, J. E. Moser, F. Weissortel, and J. Salbeck. 1998. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–5.
  • Bai, Y., Q. Yu, N. Cai, Y. Wang, M. Zhang, and P. Wang. 2011. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chemical Communications 47:4376–8.
  • Baikie, T., Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White. 2013. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitized solar cell applications. Journal of Materials Chemistry A 1:5628–41. DOI: 10.1039/C3TA10518K
  • Bajpai, R., S. Roy, P. Kumar, P. Bajpai, N. Kulshrestha, J. Rafiee, N. Koratkar, and D. S. Misra. 2011. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. ACS Applied Materials & Interfaces 3(10):3884–9.
  • Ball, J. M., M. M. Lee, A. Hey, and H. J. Snaith. 2013. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 6:1739.
  • Bandaranayake, K. M. P., M. K. I. Senevirathna, P. M. G. M. P. Weligamuwa, and K. Tennakone. 2004. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coordination Chemistry Reviews 248:1277–81.
  • Beek, W. J. E., M. M. Wienk, and R. A. J. Janssen. 2006. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Advanced Functional Materials 16 (8):1112–6.
  • Beek, W. J. E., M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen. 2005. Hybrid zinc oxide conjugated polymer bulk hetero junction solar cells. The Journal of Physical Chemistry B 109:9505–16.
  • Benehkohal, N. P. 2013. Innovations in electrophoretic deposition of nano titania-based photoanodes for use in dye-sensitized solar cells. PhD thesis submitted to Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada.
  • Bergeron, B. V., A. Marton, G. Oskam, and G. J. Meyer. 2005. Dye-sensitized SnO2 electrodes with iodide and pseudo-halide redox mediators. The Journal of Physical Chemistry B 109(2):937–43.
  • Berginc, M., M. Hočevar, U. O. Krašovec, A. Hinsch, R. Sastrawan, and M. Topič. 2008. Ionic liquid-based electrolyte solidified with SiO2 nanoparticle for dye-sensitized solar cells. Thin Solid Films 516(14):4645–50.
  • Beznosikov, B. V., and K. S. Aleksandrov. 2000. Perovskite-like crystals of the Ruddlesden-Popper series. Crystallography Reports 45(5):792–8.
  • Bhattacharya, B., J. Y. Lee, J. Geng, H. T. Jung, and J. K. Park. 2009. Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25(5):3276–81.
  • Bi, D., S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt. 2013. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances 3:18762–6. DOI: 10.1039/C3RA43228A
  • Biancardo, M., K. West, and F. C. Krebs. 2007. Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT: PSS counter electrodes applied to gel electrolyte assemblies. Journal of Photochemistry and Photobiology A: Chemistry 187:395–401.
  • Bigioni, T. P., X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger. 2006. Kinetically driven self assembly of highly ordered nanocrystal monolayers. Nature Materials 5:265–70.
  • Binetti, S., M. Acciarri, A. Le Donne, M. Morgano, and Y. Jestin. 2013. Key success factors and future perspective of silicon-based solar cells. International Journal of Photoenergy Article ID 249502. http://dx.doi.org/10.1155/2013/249502.
  • Bisquert, J. Dilemmas of dye-sensitized solar cells. 2011. Chemical Physica Chemical 12:1633–6.
  • Bisquert, J., P. Emilio, and C. A. Quinones. 2006. Effect of energy disorder in interfacial kinetics of dye-sensitized solar cells with organic hole transport material. The Journal of Physical Chemistry B 110 (39):19406–11.
  • Boix, P. P., K. Nonomura, N. Mathews, and S. G. Mhaisalkar. 2014. Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 17(1):16–23.
  • Boix, P. P., G. Larramona, A. Jacob, B. Delatouche, I. Mora-Seró, and J. Bisquert. 2012a. Hole transport and recombination in all-solid Sb2S3-Sensitized TiO2 solar cells using CuSCN as hole transporter. The Journal of Physical Chemistry C 116 (1):1579–87. doi: 10.1021/jp210002c
  • Boix, P. P., Y. H. Lee, F. Fabregat-Santiago, S. H. Im, I. Mora-Sero, J. Bisquert, and S. I. Seok. 2012b. From flat to nanostructured photovoltaics: Balance between thickness of the absorber and charge screening in sensitized solar cells. American Chemical Society Nano 6(1):873–80. doi: 10.1021/nn204382k
  • Borchert, H. 2010. Elementary processes and limiting factors in hybrid polymer/nanoparticle solar cells. Energy & Environment Science 3:1682–94.
  • Boucharef, M., C. Di Bin, M. S. Boumaza, M. Colas M, H. J. Snaith, B. Ratier, and J. Bouclé. 2010. Solid-state dye-sensitized solar cells based on ZnO nanocrystals. Nanotechnology 21:205203. doi:10.1088/0957–4484/21/20/205203. Epub 2010 Apr 26.
  • Brabec, C. J., A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, and T. Fromherz. 2002. The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403–4:368–72.
  • Brennan, T. P., P. Ardalan, H. B. R. Lee, J. R. Bakke, I.-K. Ding, M. D. McGehee, and S. F. Bent. 2011. Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Advanced Energy Materials 1:1169–75.
  • Burda, C., X. Chen, R. Narayanan, and M. A. El-Sayed. 2005. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews. 105 (4):1025–1102.
  • Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–9. doi: 10.1038 /nature12340
  • Cacialli, F., J. S. Wilson, J. J. Michels, C. Daniel, C. Silva, R. H. Friend, N. Severin, P. Samorì, J. P. Rabe, M. J. O’Connell, P. N. Taylor, and H. L. Anderson. 2002. Cyclodextrin-threaded conjugated poly-rotaxanes as insulated molecular wires with reduced inter-strand interactions. Nature Materials 1:160–4.
  • Calandra, P., G. Calogero, A. Sinopoli, and P. G. Gucciardi. 2010. Metal nanoparticles and carbon-based nanostructures as advanced materials for cathode application in dye-sensitized solar cells. Internation Journal of Photoenergy Article ID:109495. http://dx.doi.org/10.1155/2010/109495.
  • Cao-Cen, H., J. Zhao, L. Qiu, D. Xu, Q. Li, X. Chen, and F. Yan. 2012. High performance all-solid-state dye-sensitized solar cells based on cyanobiphenyl-functionalized imidazolium-type ionic crystals. Journal of Materials Chemistry 22:12842–50.
  • Cao, F., G. Oskam, and P. C. Searson. 1995. A solid-state dye sensitized photo-electrchemical cell. The Journal of Physical Chemistry 99 (47):17071–3.
  • Cha, S. I., B. K. Koo, S. H. Seo, and D. Y. Lee. 2010. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls. Journal of Materials Chemistry 20:659–62.
  • Chan, Y. -F., C. -C. Wang, and C.-Y. Chen. 2013. Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-Dgraphenes incorporated. Journal of Materials Chemistry A 1:5479–86.
  • Chang, C. -H., Y.-C. Chen, C.-Y. Hsu, H.-H. Chou, and J. T. Lin. 2012a. Squaraine-arylamine sensitizers for highly efficient p-type dye-sensitized solar cells. Organic Letters 14 (18):4726–9.
  • Chang, D. W., H. N. Tsao, P. Salvatori, F. De Angelis, M. Grätzel, S. M. Park, L. Dai L, H. J. Lee, J. B. Baek, and M. K. Nazeeruddin. 2012b. Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances 2:6209–15.
  • Chen, C.-Y., S.-J. Wu, C.-G. Wu, J.-G. Chen, and K.-C. Ho. 2006. A ruthenium complex with super high light-harvesting capacity for dye-sensitized solar cells. Angewandte Chemie International Edition 45 (35):5822–5.
  • Chen, K. -F., C.-H. Liu, H.-K. Huang, C.-H. Tsai, and F.-R. Chen. 2013. Polyvinyl butyral-based thin film polymeric electrolyte for dye-sensitized solar cell with long-term stability. International Journal of Electrochemical Science 8:3524–39.
  • Chen, L. -Y., and Y. -T. Yin. 2012. The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells. Journal of Materials Chemistry 22:24591–6.
  • Chen, L. C., D. Godovsky, O. Inganäs, J. C. Hummelen, R. A. J. Janssens, M. Svensson, and M. R. Andersson. 2000. Polymer solar cells from stratified multilayers of donor-acceptor blends. Advanced Materials 12:1367–70.
  • Chen, W., and S. Yang. 2011. Dye-sensitized solar cells based on ZnO nano-tetrapods. Front. Optoelectronics in China 4 (1):24–44.
  • Chen, X., J. Zhao, J. Zhang, L. Qiu, D. Xu, H. Zhang, X. Han, B. Sun, G. Fu, Y. Zhang, and F. Yan. 2012. Bis-imidazolium based poly (ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry 22:18018–24.
  • Chen, Y., Z. Zeng, C. Li, W. Wang, X. Wang, and B. Zhang. 2005. Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New Journal of Chemistry 29 (6):773–6.
  • Chen, Z. G., F. Y. Li, H. Yang, T. Yi, and C. H. Huang. 2007. A thermo stable and long-term-stable ionic-liquid-based gel electrolyte for efficient dye-sensitized solar cells. ChemPhysChem 8:1293–7.
  • Chen, D., F. Huang, Y. -B. Cheng, and R. A. Caruso. 2009. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Advanced Materials 21 (21):2206–10.
  • Cheng, M., X. Yang, J. Li, F. Zhang, and L. Sun. 2013. Co-sensitization of organic dyes for efficient dye-sensitized solar cells. ChemSusChem 6 (1):70–7.
  • Cheng, Z., and J. Lin. 2010. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12:2646–62. doi: 10.1039/ C001929A
  • Chi, W. S., D. K. Roh, S. J. Kim, S. Y. Heo SY, and J. H. Kim. 2013. Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-sensitized solar cells. Nanoscale 5 (12):5341–8. doi: 10.1039/c3nr00291h.
  • Chiba, Y., A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han. 2006. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics 45: L638–40.
  • Choi, H., C. Baik, S. O. Kang, J. Ko, M. -S. Kang, M. K. Nazeeruddin, and M. Graetzel. 2009. An efficient dye-sensitized solar cell with an organic sensitizer encapsulated in a cyclo-dextrin cavity. Angewandte Chemie International Edition 48 (32):5938–41.
  • Choi, H., S. Paek, K. Lim, C. Kim, M.-S. Kang, K. Song, and J. Ko. 2013. Molecular engineering of organic sensitizers for highly efficient gel-state dye-sensitized solar cells. Journal of Materials Chemistry A 1:8226–33.
  • Chou, C. -Y., C.-T. Li, C.-P. Lee, L.-Y. Lin, M.-H. Yeh, R. Vittal, and K.-C. Ho. 2013. ZnO nanowire/nanoparticles composite films for the photo anodes of QD-sensitized solar cells. Electrochimica Acta 88:35–43.
  • Chou, C. -S., C. -I. Huang, R.-Y. Yang, and C.-P. Wang. 2010a. The effect of SWCNT with the functional group deposited on the counter electrode on the dye-sensitized solar cell. Advanced Powder Technology 21 (5):542–50.
  • Chou, C. -S., C.-M. Hsiung, C.-P. Wang, R.-Y. Yang, and M.-G. Guo. 2010b. Preparation of a counter electrode with P-type NiO and its applications in dye-sensitized solar cell. International Journal of Photoenergy Article ID 902385; doi: 10.1155/2010/902385
  • Christians, J. A., R. C. M. Fung, and P. V. Kamat. 2014. An Inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society 136 (2):758–64. doi: 10.1021/ja411014k
  • Chu, H. -C., D. Sahu, Y. -C. Hsu, H. Padhy, D. Patra, J.-T. Lin J-T, D. Bhattacharya, K. -L. Lu, K.-H. Wei, and H. -C Lin. 2012. Structural planarity and conjugation effects of novel symmetrical acceptor-donor-acceptor organic sensitizers on dye-sensitized solar cells. Dyes and Pigments 93 (1–3):1488–97.
  • Chung, I., B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis. 2012. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–9.
  • Clifford, J. N., E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. Nelson, X. Li, N. J. Long, and J. R. Durrant. 2004. Molecular control of recombination dynamics in dye sensitized nanocrystalline TiO2 films: Free energy versus distance dependence. Journal of the American Chemical Society 126:5225–33.
  • Clifford, J. N., G. Yahioglu, L. R. Milgrom, and J. R. Durrant. 2002., Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. Chemical Communications 1260–1
  • Conings, B., L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H. -G. Boyen. 2014. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Advanced Materials 26 (13):2041–6.
  • Cosar, M. B. 2013. The development of bifacial dye sensitized solar cells based on binary ionic liquid electrolyte, M Sc Thesis, Middle East Technical University.
  • Cristina, R. -C., O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink. 2014. Flexible high efficiency perovskite solar cells. Energy & Environmental Science 7: 994–7; doi: 10.1039/C3EE43619E
  • Daeneke, T., A. J. Mozer, T. Kwon, N. W. Duffy, A. B. Holmes, U. Bach, and L. Spiccia. 2012. Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy & Environmental Science 5 (5):7090–9.
  • Daeneke, T., T. -H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, and L. Spiccia. 2011. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chemistry 3:211–5.
  • Dai, F. -R., W. -J. Wu, Q. -W. Wang, H. Tian, and W. -Y. Wong. 2011. Heteroleptic Ru-complexes containing uncommon 5,5’-disubstituted-2–2’-bipyridine chromophores for dye sensitized solar cells. Dalton Transactions 40 (10):2314–23.
  • Dayal, S., N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles. 2010. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Letter 10 (1):239–42.
  • Desai, U. V., C. Xu, J. Wu, and D. Gao. 2012. Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays. Nanotechnology 2012, 23, 205401. doi:10.1088/0957-4484/23/20/205401
  • DiCarmine, P. M., and O. A. Semenikhin. 2008. Intensity modulated photo current spectroscopy of solid-state poly-biothiophene based solar cells. Electrochimica Acta 53:3744–54.
  • Diener, M. D., and J. M. Alford. 1998. Isolation and properties of small-band gap fullerenes. Nature 393 (6686):668–71.
  • Drees, M., K. Premaratne, W. Graupner, J. R. Heflin, R. M. Davis, D. Marciu, and M. Miller. 2002. Creation of a gradient polymer-fullerene interface in photovoltaic devices by thermally controlled inter diffusion. Applied Physics Letters 81 (24):4607–9.
  • Edri, E., S. Kirmayer, D. Cahen, and G. Hodes. 2013. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. The Journal of Physical Chemistry Letters 4 (6):897–902. doi: 10.1021/jz400348q
  • EISP- Environmental Impact of Solar Power, 2013.; Available at http://www. ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-solar power.html
  • Elias, J., L. Philippe, and J. Michler. 2012. ETA solar cells, extremely thin absorber solar cell based on electrodeposited ZnO nanostructures, Feuerwerkerstrasse 39
CH-3602, Thun. Final Report.
  • Empedocles, S. A., and M. Bawendi M. 1999. Spectroscopy of single CdSe nanocrystallites. Accounts of Chemical Research 32:389–96.
  • EPB-Energy Pay Back; Available at http://www.pvemployment.org/pv-basics/ environmental-impact.html
  • Eperon, G. E., S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith. 2014a. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7:982–8.
  • Eperon, G. E., V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith. 2014b. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials 24 (1):151–7.
  • Ernst, K., A. Belaidi, and R. Könenkamp. 2004. Solar cell with extremely thin absorber on highly structured substrate. Semiconductor Science and Technology 18:475.
  • Etgar, L., P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel. 2012. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 134:17396.
  • Fabregat-Santiago, F., J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Graetzel. 2009. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. Journal of the American Chemical Society 131 (2):558–62.
  • Fang, J., J. Wu, X. Lu, Y. Shen, and Z. Lu. 1997. Sensitization of nanocrystalline TiO2 electrode with quantum sized CdSe and ZnTCPc molecules. Chemical Physics Letters 270 (1–2):145–51.
  • Feldt, S. M., U. B. Cappel, E. M. J. Johansson, G. Boschloo, and A. Hagfeldt. 2010. Characterization of surface passivation by poly (methyl siloxane) for dye-sensitized solar cells employing the ferrocene redox couple. The Journal of Physical Chemistry C 114:10551–8.
  • FISES. 2013. Fraunhofer Institute for Solar Energy Systems; Soitec; CEA-Leti, and Helmholtz Center Berlin. http://phys.org/news/2013–09-world-solar-cell-efficiency. html
  • Frank, A. J., N. Kopidakis, and J. van de Lagemaat. 2004. Electrons in nano structured TiO2 solar cells: transport, recombination and PV properties. Coordination Chemistry Reviews 248 (13–14):1165–79.
  • Fujishima, A., and X. T. Zhang. 2005. Solid-state dye-sensitized solar cells. Proceedings of the Japan Academy 81:33–42.
  • Fukui, A., R. Komiya, R. Yamanaka, A. Islam, and L. Han. 2006. Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells 90:649–58.
  • Gagliardi, S., L. Giorgi, R. Giorgi, N. Lisi, T. D. Makris, E. Salernitano, and A. Rufoloni. 2009. Impedance analysis of nanocarbon DSSC electrodes. Superlattices and Microstructures 46 (1–2):205–8.
  • Gao, F., Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel. 2008. A new heteroleptic Ru- sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chemical Communications 2635–7.
  • Gebeyehu, D., C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, and H. Schindler. 2001. Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Metals 125:279–87.
  • Gebenyehu, D., C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, and H. Schindler. 2002. Hybrid solar cells based on dye sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport material. Synthetic Metals 125:279–87.
  • Ginger, D. S., and N. C. Greenham. 2000. Charge injection and transport in films of CdSe nanocrystals. Journal of Applied Physics 87:1361
  • Goldschmidt, V. M. 1937. Geochemische Verteilungsgesetze der Elemente, I-IX, Skifter Utgitt ar dev Norske Videnskaps-Akademii, Oslo.
  • Gorlov, M., H. Pettersson, A. Hagfeldt, and L. Kloo. 2007. Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids. Inorganic Chemistry 46:3566–75.
  • Granström, M., K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend. 1998. Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–60.
  • Grätzel, M. 2001. Photoelectrochemical cells. Nature 414:338–44.
  • Grätzel, M. 2004. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 164 (1–3):3–14.
  • Grätzel, M. 2005. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 44 (20):6841–51.
  • Grätzel, M., and A. J. Frank. 1982. Interfacial electron-transfer reactions in colloidal semiconductor dispersions. Kinetic analysis. The Journal of Physical Chemistry 86 (15):2964–7.
  • Green, M. A., K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop. 2012. Progress in photovoltaics: Research and Applications 20 (2):12–20.
  • Greenham, N. C., X. Peng, and A. P. Alivisatos. 1996. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B 54 (24):17628–37.
  • Gregg, B. A., F. Pichot, S. Ferrere, and C. L. Fields. 2001. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. The Journal of Physical Chemistry B 105:1422–9.
  • Greiner, A., and J. H. Wendorff. 2007. Electro-spinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition 46:5670–703.
  • Gur, I., N. A. Fromer, M. L. Geier, and A. P. Alvisatos. 2005. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310 (5747):462–5.
  • Ha, Y. -H., N. Nikolov, S. K. Pollack, J. Mastrangelo, B. D. Martin, and R. Shashidhar. 2004. Towards a transparent, highly conductive poly (3,4-ethylenedioxy thiophene). Advanced Functional Materials 14 (6):615–22.
  • Hagberg, D. P., J. H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin. 2008. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. Journal of the American Chemical Society 130 (19):6259–66.
  • Hagberg, D. P., T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, and L. Sun. 2006. A novel organic chromophore for dye-sensitized nanostructured solar cells. Chemical Communications 21:2245–7.
  • Hagfeldt, A., and M. Graetzel. 1995. Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews 95 (1):49–68.
  • Hal, P. A. V., M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Sloff, W. J. H. V. Gennip, P. Jonkhejm, and R. A. J. Janssen. 2003. Photo-induced electron transfer and photovoltaic response of a MDMO-PPV: TiO2 bulk-heterojunction. Advanced Materials 15:118.
  • Halme, J. 2002. Dye-sensitized nanostructured and organic photovoltaic cells: Technical review and preliminary tests, Master Thesis, Engineering Physics and Mathematics Department, Helsinki University of Technology.
  • Hamadanian, M., and V. Jabbari. 2012. Improved conversion efficiency in dye-sensitized solar cells based on electro-spun TiCl4-treated TiO2 nanorod electrodes. International Journal of Green Energy 11: 364–375, 2014; doi: 10.1080/ 15435075.2012.674080.
  • Hamann, T. W., A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp. 2008. Aerogel template ZnO dye sensitized solar cells. Advanced Materials 20:1560–4.
  • Handa, S., H. Wietasch, M. Thelakkat, J. R. Durrant, and S. A. Haque. 2007a. Reducing charge recombination losses in solid-state dye sensitized solar cells: the use of donor-acceptor sensitizer dyes. Chemical Communications 1725–7.
  • Handa, S., S. A. Haque, and J. R. Durrant. 2007b. Saccharide blocking layers in solid-state dye sensitized solar cells, Advanced Functional Materials 17:2878–83.
  • Hao, S., J. Wu, Y. Huang, and J. Lin. 2006. Natural dyes as photo sensitizers for dye-sensitized solar cell. Solar Energy 80 (2):209–14.
  • Haque, S. A., S. Handa, K. Peter, E. Palomares, M. Thelakkat, and J. R. Durrant. 2005. Super-molecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: Towards a quantitative structure-function relationship. Angewandte Chemie International Edition 44:5740–4.
  • Haque, S. A., T. Park, C. Xu, S. Koops, N. Schulte, R. J. Potter, A. B. Holmes, and J. R. Durrant. 2004. Molecular-level insulation: An approach to controlling interfacial charge transfer. Advanced Materials 16:1177.
  • Haque, S.A., E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, and J. R. Durran. 2003. Flexible dye sensitized nano crystalline semiconductor solar cells. Chemical Communications 24:3008–9.
  • Hara, K., K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa. 2001. A coumarin derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications 569–70.
  • Hara, K., M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa. 2003. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chemical Communications 252–3.
  • Hara, K., T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga, and H. Arakawa. 2005. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Advanced Functional Materials 15:246–52.
  • Hasin, P., M. A. Alpuche-Aviles, Y. Li, and Y. Wu. 2009. Mesoporous Nb-doped TiO2 as Pt support for counter electrode in dye-sensitized Solar Cells. The Journal of Physical Chemistry C 113:7456–60.
  • Hattori, S., Y. Wada, S. Yanagida, and S. Fukuzumi. 2005. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society 127:9648–54.
  • He, W., J. Qiu, F. Zhuge, X. Li, J.-H. Lee, Y.-D. Kim, H.-K. Kim, and Y.-H. Hwang. 2012. Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells. Nanotechnology 23 (22):225602.
  • Heo, N., Y. Jun, and J. H. Park. 2013. Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells. Scientific Reports 3:1712(1–6): doi:10.1038/ srep01712
  • Hindson, J. C., Z. Saghi, J. C. Hernandez-Garrido, P. A. Midgley, and N. C. Greenham. 2011. Morphological study of nanoparticle−polymer solar cells using high-angle annular dark-field electron tomography. Nano Letters 11 (2), 904–9.
  • Hoppe, H., and N. S. Sariciftci. 2004. Organic solar cells: An overview. Journal of Materials Research 19:1924–45.
  • Horiuchi, T., H. Miura, K. Sumioka, and S. Uchida. 2004. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society 126:12218–9.
  • Hoyer, P., and R. Könenkamp. 1995. Photoconduction in porous TiO2 sensitized by PbS quantum dots. Applied Physics Letters 66:349–51.
  • Hsu, D. D., P. O’Donoughue, V. Fthenakis, G. A. Heath, H. C. Kim, P. Sawyer, J.-K. Choi and D. E. Turney 2012. Life cycle greenhouse gas emissions of crystalline silicon photovoltaic electricity generation. Journal of Industrial Ecology16(s1):S122–S135. DOI: 10.1111/j.1530–9290.2011.00439.x
  • Huynh, W. U., J. J. Dittmer, and A. P. Alivisatos. 2002. Hybrid nanorod-polymer solar cells. Science 295 (5564):2425–7.
  • Huynh, W. U., J. J. Dittmer, W. C. Libby, G. L. Whiting, and A. P. Alivisatos. 2003. Controlling the Morphology of Nanocrystal-Polymer Composites for Solar Cells. Advanced Functional Materials 13 (1):73–9.
  • Huynh, W. U., X. Peng, and A. P. Alivisatos. 1999. CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices. Advanced Materials 11:923–7.
  • Hwang, S., J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. -H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, and C. Kim. 2007. A highly efficient organic sensitizer for dye-sensitized solar cells. Chemical Communications 46:4887–9.
  • IEA Roadmap; Solar Photovoltaic Energy, International Energy Agency; available @ https://www.iea.org/publications/freepublications /publication /pv_roadmap.pdf
  • Im, J-H., C. -R. Lee, J. -W. Lee, S.-W. Park, and N.-G. Park. 2011. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3: 4088–93; DOI: 10.1039/C1NR1086
  • Imoto, K., K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata. 2003. High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 79:459–69.
  • Ito, S. 2011. Investigation of dyes for dye-sensitized solar cells: Ruthenium-complex dyes, metal-free dyes, metal-complex porphyrin dyes and natural dyes. Available at http://www.intechopen.com/books/solar-cells-dye-sensitized-devices/investigation-of-dyes-for-dye-sensitized-solar-cells-ruthenium-complex-dyes-metal-free-dyes-metal-co.
  • Ito, S., T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel. 2008. Fabrication of thin film dye-sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–9.
  • Jang, S. -R., C. Lee, H. Choi, J. J. Ko, J. Lee, R. Vittal, and K. -J. Kim. 2006. Oligophenylenevinylene-functionalized Ru(II)-bipyridine sensitizers for efficient dye-sensitized nanocrystalline TiO2 solar cells. Chemistry of Materials 18 (23):5604–8.
  • Jeng, J. Y., Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen. 2013. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials 25 (27):3727–32. doi: 10.1002/adma. 201301327. Epub 2013 Jun 18.
  • Jose, R., V. Thavasi, and S. Ramakrishna. 2009. Metal oxides for dye-sensitized solar cells. Journal of the American Ceramic Society 92:289–301.
  • Juarez-Perez, E. J., M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero. 2014. Role of the selective contacts in the performance of lead halide perovskite solar cells. The Journal of Physical Chemistry Letters 5:680–5; dx.doi.org/10.1021/jz500059v
  • Jung, H. -G., S. Nagarajan, Y. S. Kang, and Y. -K. Sun. 2013. Nano structured TiO2 microspheres for dye-sensitized solar cells employing a solid-state polymer electrolyte. Electrochimica Acta 89:848–53.
  • Kaiser, I., K. Ernst, K. Fischer, R. Ko¨nenkamp, C. Rost, I. Sieber, and M.C. L. Steiner. 2001. The eta solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber. Solar Energy Materials & Solar Cells 67 (1–4):89–96.
  • Kalyanasundaram K, N. Vlachopoulos, V. Krishnan, A. Monnier, and M. Grätzel. 1987. Sensitization of TiO2 in the visible light region using zinc porphyrins. The Journal of Physical Chemistry 91:2342–7.
  • Kalyanasundaram, K., and M. Grätzel. 1998. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews 177:347–414.
  • Kaneko, M., and T. Hoshi. 2003. Dye-sensitized solar cell with polysaccharide solid electrolyte. Chemistry Letters 32:872–3.
  • Kang, M. S., K. S. Ahn, J. W. Lee, and Y. S. Kang. 2008. Dye-sensitized solar cells employing non-volatile electrolytes based on oligomer solvent. Journal of Photochemistry and Photobiology A: Chemistry 195 (2):198–204.
  • Kang, Y., N.-G. Park, and D. Kim. 2005. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer. Applied Physics Letters 113101. //dx.doi.org/10.1063/1.1883319
  • Karthikeyan, C. S., H. Wietasch, and M. Thelakkat. 2007. Highly efficient solid-state dye-sensitized TiO2 solar cells using donor-antenna dyes capable of multistep charge-transfer cascades. Advanced Materials 19:1091–5.
  • Kashif, M. K., J. C. Axelson, N. W. Duffy, C. M. Forsyth, C. J. Chang, J. R. Long, L. Spiccia, and U. Bach. 2012. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the Co (II)/(III) redox potential through Lewis base interactions. Journal of the American Chemical Society 134:16646–53.
  • Kato, F., A. Kikuchi, T. Okuyama, K. Oyaizu, and H. Nishide. 2012. Nitroxide radicals as highly reactive redox mediators in dye-sensitized solar cells. Angewandte Chemie International Edition 51:10177–80.
  • Kawano, R., M. K. Nazeeruddin, A. Sato, M. Grätzel, and M. Watanabe. 2007. Amphiphilic ruthenium dye as an ideal sensitizer in conversion of light to electricity using ionic liquid crystal electrolyte. Electrochemistry Communications 9 (5):1134–8.
  • Kay, A., and M. Grätzel. 1993. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. The Journal of Physical Chemistry 97:6272–7.
  • Kay, A., and M. Grätzel. 1996. Low cost photovoltaic modules based on dye-sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 44:99–117.
  • Kazaoui, S., and N. Minami. 1997. Intermolecular charge transfer excitons in C70 as compared with C60 films. Synthetic Metals 86:2345–6.
  • Kebede, Z., and S. E. Lindquist. 1999. Donor–acceptor interaction between non-aqueous solvents and I2 to generate I−3, and its implication in dye sensitized solar cells. Solar Energy Materials and Solar Cells 57:159–75.
  • Khazraji, A. C., S. Hotchandani, S. Das, and P. V. Kamat. 1999. Controlling dye (Merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. The Journal of Physical Chemistry B 103:4693–700.
  • Kim, H. -J., Y. -T. Bin, S. N. Karthick, K. V. Hemalatha, C. J. Raj, S. Venkatesan, S. Park, and G. Vijayakumar. 2013a. Natural dye extracted from rhododendron species flowers as a photosensitizer in dye sensitized solar cell. International Journal of Electrochemical Science 8:6734–43.
  • Kim, H., H. Choi, S. Hwang, Y. Kim, and M. Jeon. 2012b. Fabrication and characterization of carbon-based counter electrodes prepared by electro phoretic deposition for dye-sensitized solar cells. Nanoscale Research Letters 7 (1):53. doi: 10.1186/1556–276X-7–53
  • Kim, H. C., V. Fthenakis, J. -K. Choi andD. E. Turney 2012d. Life cycle greenhouse gas emissions of thin-film photovoltaic electricity. Journal of Industrial Ecology 16 (s1):S110–S121. doi: 10.1111/j.1530–9290.2011.00423.x
  • Kim, S., D. Kim, H. Choi, M. S. Kang, K. Song, S. O. Kang, and J. Ko. 2008. Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering. Chemical Communications 4951–3.
  • Kim, H. -S., C. -R. Lee, J. -H. Im, K. -B. Lee, T. Moehl, A. Marchioro, S. -J. Moon, R. Humphry-Baker, J. -H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park. 2012c. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2:591. doi: 10.1038/srep00591.
  • Kim, J. -H., K.-J. Lee, J.-H. Roh, S.-W. Song, J.-H. Park, I.-H. Yer, and B.-M. Moon. 2012a. Ga-doped ZnO transparent electrodes with TiO2 blocking layer/NPs for dye-sensitized solar cells. Nanoscale Research Letters 7:11.
  • Kim, H. -S., J.-W. Lee, N. Yantara, P.P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, and N.-G. Park. 2013b. High efficiency solid-state sensitized solar cells based on sub-micrometer rutile TiO2 nanorods and CH3NH3PbI3 perovskite sensitizer. Nano Letters 13 (6):2412–7.
  • Kim, H. -S., J. -W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N. -G. Park. 2013c. High efficiency solid-state sensitized solar cell-based on sub-micrometer rutile TiO2 nanorods and CH3NH3PbI3 perovskite sensitizer. Nano Letters 13 (6):2412–7.
  • Kim, H. -N., and J. H. Moon. 2012. Enhanced photovoltaic properties of Nb2O5-coated TiO2 3d ordered porous electrodes in dye-sensitized solar cells. ACS Applied Materials & Interfaces 4 (11):5821–5.
  • Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong. 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature Letters 457:706–10; doi:10.1038/nature07719
  • King, D. M., J. A. Spencer, X. Liang, L. F. Hakim, and A. W. Weimer. 2007. Atomic layer deposition on particles using fluidized bed reactor with in situ mass spectrometry. Surface and Coatings Technology 201 (22–23):9163–71.
  • Kitamura, T., M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, and S. Yanagida. 2004. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chemistry of Materials 16 (9):1806–12.
  • Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cell. Journal of the American Chemical Society 131:6050.
  • Konno, A., G. R. A. Kumara, and S. Kaneko. 2007. Solid-state Solar cells sensitized with indoline dye. Chemistry Letters 36 (6):716–7. ISSN 0366–7022
  • Kopidakis, N., E. A.Schiff, N. -G. Park, J. van de Lagemaat, and A. J. Frank. 2000. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. The Journal of Physical Chemistry B 104:3930–6.
  • Kopidakis, N., K. D. Benkstein, J. van de Lagemaat, and A, J. Frank. 2003. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B 107:11307–15.
  • Koumura, N., Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara. 2006. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. Journal of the American Chemical Society 128 (44):14256–7.
  • Kroon, J. M. 2005. Nanocrystalline dye sensitized solar cells having maximum performance; NANOMAX Final Technical Report.
  • Krüger, J., R. Plass, M. Grätzel, and H. Matthieu. 2002. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4’-dicarboxy2,2’bipyridine)-bis(isothiocynato) ruthenium (II). Journal Applied Physics Letters 81:367–9.
  • Kuang, D., J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Grätzel. 2008. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. American Chemical Society Nano 2:1113–6.
  • Kuang, D., S. Ito, B. Wenger, C. Klein, J. -E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel. 2006. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. Journal of the American Chemical Society 128 (12):4146–54.
  • Kuang, D., C. Klein, S. Ito, J. -E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel. 2007a. High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Advanced Functional Materials 17 (1):154–60.
  • Kuang, D., C. Klein, S. Ito, J. -E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grätzel, S. M. Zakeeruddin, and M. Grätzel. 2007b. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Advanced Materials 19 (8):1133–7.
  • Kumar, M. H., N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews. 2013. Flexible, low temperature, solution processed ZnO-based perovskite solid-state solar cells. Chemical Communications 49:11089–91. DOI: 10.1039/C3CC46534A
  • Kumar, S., and T. Nann. 2004. First solar cells based on CdTe NP/MEH-PPV composites. Journal of Materials Research 19 (7):1990–4.
  • Kumara, G. R. R. A., A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. De Silva, and K. Tennakone. 2001. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Solar Energy Materials and Solar Cells 69:195–9.
  • Kumara, G. R. A., A. Konno, K. Shiratsuchi, J. Tsukahara, and K. Tennakone. 2002a. Dye-sensitized solid-state solar cells: Use of crystal growth inhibitors for deposition of the hole collector. Chemistry of Materials 14:954­-5.
  • Kumara, G. R. A., S. Kaneko, M. Okuya, and K. Tennakone. 2002b. Fabrication of dye-sensitized solar cells using triethylamine hydro thiocyanate as a CuI crystal growth inhibitor. Langmuir 18:10493
  • Kusama, H., and H. Arakawa. 2005. Influence of pyrazole derivatives in I–/I3–redox electrolyte solution on Ru (II)-dye-sensitized TiO2 solar cell performance. Solar Energy Materials and Solar Cells 85:333–44.
  • Kusama, H., and H. Arakawa. 2004a. Influence of amino-thiazole additives in I–/I3–redox electrolyte solution on Ru (II)-dye-sensitized nanocrystalline TiO2 solar cell performance. Solar Energy Materials and Solar Cells 82:457–65.
  • Kusama, H., and H. Arakawa. 2004b. Influence of amino-triazole additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A 164:103–10;
  • Kusama, H., and H. Arakawa. 2004c. Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A 162:441–8.
  • Kusama, H., and H. Arakawa. 2004d. Influence of quinoline derivatives in I−/I3− redox electrolyte solution on the performance of Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell. Journal of Photochemistry and Photobiology A 165:157–63.
  • Lan, J.-L., C.-C. Wan, T.-C. Wei, W.-C. Hsu, C. Peng, Y.-H. Chang, and C.-M. Chen. 2011. Improvement of PV performance of dye sensitized solar cells by post heat treatment of polymer capped nano Pt counter electrode. International Journal of Electrochemical Science 6:1230–6.
  • Lan, Z., J. Wu, J. Lin, M. Huang, P. Li, and Q. Li. 2008. Influence of ionic additives NaI/I2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta 53:2296–301.
  • Lana, J. -L., H. -P. Feng, T. -C. Wei, C. Peng, H. -P. Cheng, W. -H. Chen, Y. -H. Chang, W. -C. Hsu and C. -C. Wan. 2010. Platinum nanoparticles on flexible carbon fiber paper without transparent conducting oxide glass as counter electrode for dye-sensitized solar cells. Journal of the Chinese Chemical Society 57,:1217–20.
  • Laurea, TD. 2011. Functionalization of carbon nanotubes with quantum dots for photovoltaic applications, Universita Degli Studi Di Padova, available at: http://tesi.cab.unipd.it/28964/1/tesi_Andrea_Ballarin.pdf
  • Law, M., L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang. 2005. Nanowire dye-sensitized solar cells. Nature Materials 4:455–9.
  • Lee, S.-H. A. 2010. Improving the efficiency and the stability of dye-sensitized photochemical solar cells and water splitting system. PhD thesis submitted to Department of Chemistry, The Graduate School. The Pennsylvania State University.
  • Lee, H. J., P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, and M. K. Nazeeruddin. 2009b. Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25:7602–8.
  • Lee, C.- P., T.-C. Chu, L.-Y. Chang, J.-J. Lin and K.-C. Ho. 2013. Solid-State Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells, Ionic Liquids - New Aspects for the Future Available at: http://www.intechopen.com/ books/ ionic-liquids-new-aspects-for-the-future/solid-state-ionic-liquid-based-electrolytes-for-dye-sensitized-solar-cells.
  • Lee, Y., and M. Kang. 2010. The optical properties of .nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC. Materials Chemistry and Physics 122:284–9.
  • Lee, K. S., H. K. Lee, D. H. Wang, N.-G. Park, J. Y. Lee, O. O. Park and J. H. Park. 2010. Dye-sensitized solar cells with Pt and TCO-free counter electrodes. Chemical Communications 46:4505–7.
  • Lee, Y. -L., and Y. -S. Lo. 2009. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Advanced Functional Materials 19 (4):604–9.
  • Lee, C. W., H. P. Lu, C. M. Lan, Y. L. Huang, Y. R. Liang, W. N. Yen, Y. C. Liu, Y. S. Lin, E. W. Diau, and C. Y. Yeh. 2009a. Novel zinc porphyrin sensitizers for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties. Chemistry - A European Journal 15:1403–12.
  • Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. 2012. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338 (6107):643–7.
  • Lenzmann, F., J. Krueger, S. Burnside, K. Brooks, M. Grätzel, D. Gal, S. Rühle, and D. Cahen. 2001. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states. The Journal of Physical Chemistry B 105:6347–52.
  • Li, S.-L., K.-J. Jiang, K.-F. Shao, and L.M. Yang. 2006c. Novel organic dyes for efficient dye-sensitized solar cells. Chemical Communications 2792–4.
  • Li, Q., H. Chen, L. Lin, P. Li, Y. Qin, M. Li, B. He, L. Chu, and Q. Tang. 2013. Quasi-solid-state dye-sensitized solar cell from polyaniline integrated poly (hexamethylene diisocyanate tripolymer/polyethylene glycol) gel electrolyte. Journal of Materials Chemistry A 1:5326–32.
  • Li, Q., X. Chen, J. Zhao, L. Qiu, Y. Zhang, B. Sun, and F. Yan. 2012. Organic ionic plastic crystal-based electrolytes for solid-state dye-sensitized solar cells. Journal of Materials Chemistry 22:6674–9.
  • Li, D., H. Li, Y. Luo, K. Li, Q. Meng, M. Armand, and L. Chen. 2010. Non-corrosive, non-absorbing organic redox couple for dye-sensitized solar cells. Advanced Functional Materials 20:3358–65.
  • Li, D., J. T. McCann, Y. Xia, and M. Marquez. 2006b. Electro spinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. Journal of the American Ceramic Society 89:1861–9.
  • Li, B., L. Wang, B. Kang, P. Wang, and Y. Qiu. 2006a. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells 90:549–73.
  • Li, Q. H., J. H. Wu, Q. W. Tang, Z. Lan, P. J. Li, and J. M. Lin. 2008. Application of micro porous poly aniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications 10:1299–302.
  • Li, Y., and Y. Zou. 2008. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Advanced Materials 20:2952–8.
  • Liao, H. -C., S. -Y. Chen, and D.-M. Liu. 2009. In-situ growing CdS single-crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance. Macromolecules 42 (17):6558–63.
  • Lim, S. -S., S. Sarker, S. Yoon, N. C. D. Nath, Y. J. Kim, H. B. Jeon, and J.-J. Lee. 2012. A Series of N-alkylimidazolium propylhexanamide iodide for dye-sensitized solar cells. Bulletin of the Korean Chemical Society 33 (5):1480–4.
  • Lin, C., J. Lin, J. Lan, T. Wei, and C. Wan. 2010. Electro-less Pt counter electrode for dye-sensitized solar cells by using self-assembly monolayer modification. Electrochemical and Solid-State Letters 13: D77–9.
  • Lindström, H., A. Holmberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt. 2001a. A new method to make dye-sensitized nanocrystalline solar cells at room temperature. Photochemistry and Photobiology A 145 (1–2):107–12.
  • Lindström, H., A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, and A. Hagfeldt. 2001b. A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Letter 1 (2):97–100.
  • Liu, Y., M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law. 2010. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Letters 10:1960–9.
  • Liu, Y., A. Hagfeldt, X. -R. Xiao, and S.-E. Lindquist. 1998. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells 55:267.
  • Liu, C. -Y., Z. C. Holman, and U. R. Kortshagen. 2009. Hybrid solar cells from P3HT and silicon nanocrystals. Nano Letter 9 (1):449–52.
  • Liu, M., M. B. Johnston, and H. J. Snaith. 2013a. Efficient planar hetero junction perovskite solar cells by vapor deposition. Nature. 501 (7467):395–8.
  • Liu, D., and P. V. Kamat. 1993. Photo electro chemical behavior of thin cadmium selenide semiconductor films. The Journal of Physical Chemistry 97 (41):10769–73.
  • Liu, D., and T. L. Kelly. 2013. Perovskite solar cells with a planar hetero junction structure prepared using room temperature solution processing technique. Nature Photonics DOI:10.1038/ NPHOTON. (2013)342.
  • Liu, K., S. Qu, X. Zhang, F. Tan, and Z. Wang. 2013b. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating Ag nanoparticles. Nanoscale Research Letters 8:88.
  • Lu, H. -P., C.-Y. Tsai, W.-N. Yen, C.-P. Hsieh, C.-W. Lee, C.-Y. Yeh, and E. W. -G. Diau. 2009. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of co-adsorbate. The Journal of Physical Chemistry C 113:20990–7.
  • Lu, X. J., X. L. Mou, J. J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang. 2010. Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Advanced Functional Materials 20:509–15.
  • Ma, T., M. Akiyama, E. Abe, and I. Imai. 2005. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Letters 5 (12):2543–7.
  • Malinkiewicz, O., C. Roldán-Carmona, H. Bolink, and M. K. Nazeeruddin. 2014. A low-cost thin-film photovoltaic device with high-energy efficiency. 20 March 2014, SPIE Newsroom. doi: 10.1117/2. 1201403. 005375
  • Mao, H., H. Deng, H. Li, Y. Shen, Z. Lu, and H. Xu. 1998. Photo- sensitization of TiO2 semiconductor with porphyrin. Journal of Photochemistry and Photobiology A: Chemistry 114:209–212.
  • Marchioro, A., J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel, and J. -E. Moser. 2014. Unraveling the mechanism of photo-induced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics 8:250–5. doi: 10.1038/nphoton.2013.374
  • Margraf, J. T., A. Ruland, V. Sgobba, D. M. Guldi, and T. Clark. 2013. Quantum-dot-sensitized solar cells: Understanding linker molecules through theory and experiment. Langmuir 29 (7):2434–8.
  • Market-1. 2013. Dye Sensitized Solar Cells (DSSC/DSC) 2013–2023: Technologies, Markets, Players. Text available @ http://www. marketresearchreports.biz/analysis-details/dye-sensitized-solar-cells-dsscdsc-2013–2023-technologies-markets-players
  • Martinson, A. B. F., T. W. Hamann, M. J. Pellin, and J. T. Hupp. 2008. New architectures for dye-sensitized solar cells. Chemistry - A European Journal 14:4458–67.
  • McConnell, R. D. 2002. Assessment of the dye-sensitized solar cell. Renewable and Sustainable Energy Reviews 6:273–95.
  • Mechiakh, R., N. Ben Sedrine, R. Chtourou, and R. Bensaha. 2010. Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol-gel dip coating. Applied Surface Science 257 (3):670–6.
  • Megahed, S., and B. Scosati. 1995. Rechargeable non-aqueous batteries. Interface 4:34.
  • Meissner, D., S. Siebentritt and S. Günster. 1992. Int. Symp. On Opt. Mat. Tech. Eff. And Sol. Energ. Conv. XI, Toulouse, 1992.
  • Min, J., J. Won, Y. S. Kang, and S. Nagase. 2011. Benzimidazole derivatives in the electrolyte of new generation organic dye sensitized solar cells with an iodine free redox mediator. Journal of Photochemistry and Photobiology A: Chemistry. doi:10.1016/j.jphotochem.2011.02.004
  • Mishra, A., M. k. R. Fischer, and P. Bäuerle. 2009. Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition 48:2474–99.
  • Mitzi, D. B., C. A. Field, W. T. A. Harrison, and A. M. Guloy. 1994. Conducting tin halides with a layered organic-based perovskite structure. Nature 369:467–9. doi: 10.1038/369467a0
  • Mitzi, D.B., Feild, C.A., Schlesinger, Z., and R. B. Laibowitz. 1995. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. Journal of Solid State Chemistry 114 (1):159–63.
  • Mitzi, D. B., M. T. Prikas, and K. Chondroudis. 1999. Thin film deposition of organic–inorganic hybrid materials using a single source thermal ablation technique. Chemistry of Materials 11 (3):542–4. doi: 10.1021/ cm9811139
  • Moon, S.-J. 2011. Solid-state sensitized heterojunction solar cells: effect of sensitizing systems on performance and stability. PhD thesis submitted to EPFL, Switzerland. Thesis No. 4977 (2011).
  • Mosconi, E., A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis. 2013. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. The Journal of Physical Chemistry C 117 (27):13902–13. DOI: 10.1021 /jp4048659
  • Mozer, A. J., D. K. Panda, S. Gambhir, T. C. Romeo, B. W. Jensen, and G. G. Wallace. 2010. Flexible and compressible goretex- PEDOT membrane electrodes for solid-state dye-sensitized solar cells. Langmuir 26 (3):1452–55.
  • Mukherjee, S., B. Ramalingam, L. Griggs, S. Hamm, G. A. Baker, P. Fraundorf, S. Sengupta, and S. Gangopadhyay. 2012. Ultrafine sputter-deposited Pt nanoparticles for triiodide reduction in dye-sensitized solar cells: Impact of nanoparticle size, crystallinity and surface coverage on catalytic activity. Nanotechnology 23:485405. doi: 10.1088/0957–4484/23/48/485405
  • Mulmudi, H. K., N. Yantara, S. Dharani, M. Graetzel, S Mhaisalkar, P. P. Boix, and N. Mathews. 2013. Flexible, low-temperature, solution processed ZnO-based perovskite solid-state solar cells. Chemical Communications 49:11089–91. doi: 10.1039/C3CC46534A
  • Mulvaney, D. 2013. Hazardous materials used in Si PV cell production. Available @ http://www.solarindustrymag.com/issues/ SI1309/FEAT_05_ Hazardous_Materials_Used_In_Silicon_PV_Cell_Production_A_Primer.html
  • Murakami, T. N., and M. Grätzel. 2008. Counter electrodes for DSC: application of functional materials as catalyst. Inorganica Chimica Acta 361:572–80.
  • Murakami, T. N., S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Grätzel. 2006. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of The Electrochemical Society 153:A2255–61.
  • Murgia, M., F. Biscarini, M. Cavallini, C. Taliani, and G. Ruani. 2001. Intedigitated p-n junction: A route to improve the efficiency in organic photovoltaic cells. Synthetic Metals 121:1533–4.
  • Murphy, C. J., and J. L. Coffer. 2002. Quantum dots: A primer. App. Spectroscopy 56:16A–27A.
  • Nakashima, T., N. Satoh, K. Albrecht, and K. Yamamoto. 2008. Interface modification on TiO2 electrode using dendrimers in dye-sensitized solar cells. Chemistry of Materials 20:2538–43.
  • Namuangruk, S., R. Fukuda, M. Ehara, J. Meeprasert, T. Khanasa, S. Morada, T. Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, and V. Promarak. 2012. D-D-p-A type organic dyes for dye-sensitized solar cells with a potential of direct electron injection and high extinction coefficient: synthesis, characterization, and theoretical investigation. The Journal of Physical Chemistry C 116 (49):25653–63.
  • NanoMarkets. 2014. An update on dye sensitized solar cell technology. Text available @ http://nanomarkets.net/articles/article/ an-update-on-dye-sensitized-solar-cell-dsc-technology
  • Nanu, M., J. Schoonman, and A. Goossens. 2005. Solar-energy conversion in TiO2/CuInS2 nanocomposites. Advanced Functional Materials 15 (1):95–100.
  • Nayak, P. K., G. Garcia-Belmonte, A. Kahn, J. Bisquert, and D. Cahen. 2012. Photovoltaic efficiency limits and material disorder. Energy & Environmental Science 5:6022–39. doi: 10.1039/C2EE03178G
  • Nazeeruddin, M. K., F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel. 2005. Combined experimental and DFT-TDDFT computational study of photo electro chemical cell Ru-sensitizers. Journal of the American Chemical Society 127 (48):16835–47.
  • Nazeeruddin, M. K., R. Humphry-Baker, M. Grätzel, and B. A. Murrer. 1998. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chemical Communications 719–20.
  • Nazeeruddin, M. K., R. Humphry-Baker, M. Grätzel, D. Wöhrle, G. Schnurpfeil, G. Schneider, A. Hirth, and N. Trombach. 1999. Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines. Journal of Porphyrins and Phthalocyanines 3 (3):230–7.
  • Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel. 1993. Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 115 (4):6382–90.
  • Nazeeruddin, M. K., P. Pe´chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, B. Glen, G. B. Deacon, C. A. Bignozzi, and M. Grätzel. 2001. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 123 (8):1613–24.
  • Nazeeruddin, M. K., P. Péchy, and M. Grätzel. 1997. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex. Chemical Communications 18:1705–6.
  • Nazeeruddin, M. K., R. Splivallo, P. Liska, P. Comte, and M. Grätzel. 2003. A swift dye uptake procedure for dye sensitized solar cells. Chemical Communications 9 (12):1456–7.
  • Nelson, J. 2002. Organic photovoltaic films. Current Opinion in Solid State and Materials Science 6:87–95.
  • Nikolay, T., L. Larina, O. Shevaleevskiy, and B. T. Ahn. 2011. Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy & Environmental Science 4:1480–6.
  • Ning, Z., Q. Zhang, W. Wu, and H. Tian. 2009. Novel iridium complex with carboxyl pyridyl ligand for dye-sensitized solar cells: high fluorescence intensity, high electron injection efficiency? Journal of Organometallic Chemistry 694:2705–11.
  • Nister, D., K. Keis, S. E. Lindquist, and A. Hagfeldt. 2002. A detailed analysis of ambipolar diffusion in nanostructured metal oxide films. Solar Energy Materials and Solar Cells 73:411–23.
  • Nogueira, A. F., and M. A. De Paoli. 2000. A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte. Solar Energy Materials and Solar Cells 61 (2):135–41.
  • Nogueira, A. F., C. Longo, and M.-A. De Paoli. 2004. Polymers in dye sensitized solar cells: Overview and perspectives. Coordination Chemistry Reviews 48 (13–14):1455–68.
  • Nogueira, A. F., I. Montanari, J. Nelson, and J. R. Durrant. 2003. Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. The Journal of Physical Chemistry B 107:1567–73.
  • Nogueira, A. F., J. R. Durrant, and M. A. De Paoli. 2001. Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Advanced Materials 13 (11):826–30.
  • Noh, J. H., S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok. 2013. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters 13:1764–9.
  • NREL-Analysis-2012. New world record set for solar cells: 44% efficiency. Available @ http://www.nrel.gov/news/features/feature_detail.cfm/ feature_id = 2055
  • Nusbaumer, H., J. E. Mcser, and S. M. Zakeeruddin. 2001. CoII (dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. The Journal of Physical Chemistry B 105:10461–4.
  • Nusbaumer, H., S. M. Zakeeruddin, J. E. Moser and M. Grätzel. 2003. An alternative efficient redox couple for the dye-sensitized solar cell system. Chemistry - A European Journal 9:3756–63.
  • O’Regan, B. C., K. Bakker, J. Kroeze, H. Smit, P. Sommeling, and J. R. Durrant. 2006. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. The Journal of Physical Chemistry B 110:17155–60.
  • O’Regan, B., and M. Grätzel. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353:737–40. doi: 10.1002/anie.200601463
  • Olsen, E., G. Hagen, and S. Eric Lindquist. 2000. Dissolution of Pt in methoxypropionitrile containing LiI/I2. Solar Energy Materials and Solar Cells 63:267–73.
  • Olson, C. L. 2006. Influence of cation on charge recombination in dye-sensitized TiO2 electrodes. The Journal of Physical Chemistry B 110:9619–26.
  • Olson, J. D., G. P. Gray, and S. A. Cater. 2009. Optimizing hybrid PVs through annealing and ligand choice. Solar Energy Materials and Solar Cells 93:519–23.
  • Onoda-Yamamuro, N., T. Matsuo, and H. Suga, H. 1992. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). Journal of Physics and Chemistry of Solids 53 (7):935–9.
  • Onwona-Agyeman, B., S. Kaneko, A. Kumara, M. Okuya, K. Murakami, A. Konno, and K. Tennakone. 2005. Sensitization of nanocrystalline SnO2 films with indoline dyes. Japanese Journal of Applied Physics 44: L731–3.
  • Oo, T. Z., N. Mathews, G. Xing, B. Wu, B. Xing, L. H. Wong, T. C. Sum, and S. G. Mhaisalkar. 2012. Ultrafine gold nanowire networks as plasmonic antennae in organic photovoltaics. The Journal of Physical Chemistry C 116 (10):6453–8. doi: 10.1021/jp2099637
  • Oosterhout, S. D., M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen. 2009. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Materials 8 (10):818–24.
  • Oskam, G., B. Bergeron, G. J. Meyer, and P. C. Searson. 2001. Pseudo halogens for dye-sensitized TiO2 photo-electro-chemical cells. The Journal of Physical Chemistry B 105:6867–73.
  • Owen, J. S., J. Park, P.-E. Trudeau, and A.P. Alivisatos. 2008. Reaction chemistry and ligand exchange at cadmium−selenide nanocrystal surfaces. Journal of the American Chemical Society 130:12279–81.
  • Palomares, E., J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant. 2002. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chemical Communications 8:1464–5.
  • Palomares, E., J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant. 2003. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformal deposited metal oxide blocking layers. Journal of the American Chemical Society 125:475–82.
  • Pan, K., Y. Dong, W. Zhou, G. Wang, Q. Pan Q, Y. Yuan, X. Miao, and G. Tian. 2013. TiO2-B nano belt/anatase TiO2 nanoparticle hetero phase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Electrochimica Acta 88 (15):263–9.
  • Papageorgiou, N., P. Liska, A. Kay, and M. Grätzel. 1999. Mediator transport in multilayer nanocrystalline photo-electro-chemical cell configurations. Journal of The Electrochemical Society 146 (3):898–907.
  • Papageorgiou, N., W. F. Maier, and M. Graetzel. 1997. An iodine/triiodide reduction electro catalyst for aqueous and organic media. Journal of The Electrochemical Society 144:876–84.
  • Park, J. T., J. H. Prosser, D. J. Kim, J. H. Kim and D. Lee. 2013. Bragg stack-functionalized counter electrode for solid-state dye-sensitized solar cells. ChemSusChem 6 (5):856–64.
  • Peng, X. G., L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos. 2000. Shape control of CdSe nanocrystals. Nature 404 (6773):59–61.
  • Pettersson, L. A. A., L. S. Roman, and O. Inganäs. 1999. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 86:487–96.
  • Peumans, P., S. Uchida, and S. R. Forrest. 2003. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158–62.
  • Pichot, F., and B. A. Gregg. 2000. The Photovoltage-Determining Mechanism in dye-sensitized solar cells. The Journal of Physical Chemistry B 104 (1):6–10.
  • Pichot, F., J. R. Pitts, and B. A. Gregg. 2000. Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells. Langmuir 16:5626–30.
  • Polo, A. S., M. K. Itokazu, and I. N. Y. Murakami. 2004. Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews 248:1343–61.
  • Putkonen, M. 2011. Eicoon Workshop, Helsinki, 13–17.
  • Qi, C., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang,Y. Liu, G. Li, and Y. Yang. 2014. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 136 (2):622–5. doi: 10.1021 /ja411509g
  • Qin Y. and Q. Peng. 2012. Ruthenium sensitizers and their applications in dye sensitized solar cells. International Journal of Photoenergy. Article ID: 291579, doi: 10.1155/ 2012/291579
  • Qin, P., A. L. Domanski, A. K. Chandiran, R. Berger, H. -J. Butt, M. I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M. K. Nazeeruddin, and M. Grätzel. 2014. Yttrium-substituted nanocrystalline TiO2 photo anodes for perovskite based heterojunction solar cells. Nanoscale 6: 1508–14. doi: 10.1039/ C3NR05884K
  • Qiu, J., Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang. 2013. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5:3245–8. doi: 10.1039/C3NR00218G
  • Quiñones, C., J. Ayala, and W. Vallejo. 2010. Methylene blue photo-electro-degradation under UV irradiation on Au/Pd-modified TiO2 films. Applied Surface Science 257:367–71.
  • Ramasamy, E., and J. Lee. 2010. Large pore sized mesoporous C electro-catalyst for efficient dye sensitized solar cells. Chemical Communications 46:2136–8.
  • Rani, S., P. Suri, and R. M. Mehra. 2011. Mechanism of charge recombination and IPCE in ZnO dye-sensitized solar cells having I–/I3– and Br–/Br3– redox couple. Progress in Photovoltaics: Research and Applications 19:180–6.
  • Rehm, J. M., G. M. McLendon, Y. Nagasawa, K. Yoshihara, J. E. Moser, and M. Grätzel. 1996. Femtosecond electron-transfer Dynamics at a sensitizing dye−semiconductor (TiO2) interface. The Journal of Physical Chemistry 100:9577–8.
  • Ren, Y., Y. -Z. Zheng, J. Zhao, J. -F. Chen, W. Zhou, and X. Tao. 2012. A comparative study on indoline dye- and ruthenium complex-sensitized hierarchically structured ZnO solar cells. Electrochemistry Communications 16:57–60.
  • Ribeiro, H. A., P. M. Sommeling, J. M. Kroon, A. Mendes, C. A. V. Costa. 2009. Dye-sensitized solar cells: Novel concepts, materials, and state-of-the-art performances. International Journal of Green Energy 6 (3):245–56. doi:10.1080/15435070902880901
  • Richter, A., M. Hermle, and S. W. Glunz. 2013. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics 3 (4):1184–91.
  • Rode, D. L. 1970. Electron Mobility in II-VI Semiconductors. Physical Review B-Solid State Physics 2 (10):4036–44.
  • Rong, Y., and H. Han. 2012. Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells 105:148–52.
  • Ross Murphy. 1998. Polymer Networks-Principles of Their Formation, Structure and Properties, ed. R.F.T. Stepto, London: Blackie Academic and Professional.
  • Rostalski, J., and D. Meissner. 2000. Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Solar Energy Materials and Solar Cells 63:37–47.
  • Roy-Mayhew, J. D., D. J. Bozym, C. Punckt, and I. A. Aksay. 2010. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. American Chemical Society Nano 4 (10):6203–11.
  • Roy, P., D. Kim, K. Lee, E. Spiecker, and P. Schmuki. 2010. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2 (1):45–59.
  • Roy, S., R. Bajpai, A. K. Jena, P. Kumar, N. Kulshrestha, and D. S. Misra. 2012. Plasma modified flexible bucky paper as an efficient counter electrode in dye sensitized solar cells. Energy & Environmental Science 5:7001–6.
  • Ruani, G., C. Fontanini, M. Murgia, and C. Taliani. 2002. Weak intrinsic charge transfer complexes: a new route for developing wide spectrum organic photovoltaic cells. The Journal of Chemical Physics 116:1713.
  • Sapp, S. A., C. M. Elliott, C. Contado, S. Caramori, and C. A. Bignozzi. 2002. Substituted polypyridine complexes of Co (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society 124:11215–22.
  • Sariciftci, N. S., and A. J. Heeger. 1997. Photo physics, charge separation and associated device applications of conjugated polymer/ fullerene composites, Chapter 8. In Handbook of organic conductive molecules and polymers, ed. H. S. Nalwa, New York: John Wiley & Sons. Invited contribution. Vol. 1:413–455.
  • Sariciftci, N. S., D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl. 1993. Semiconducting polymer‐buckminster fullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Applied Physics Letters 62: 585–7; http://dx.doi.org/10.1063/1.108863
  • Sariciftci, N. S., L. Smilowitz, A. J. Heeger, and F. Wudl. 1992. Photo induced electron transfer from a conducting polymer to Buckminster fullerene. Science 258:1474–6.
  • Satoh, N., T. Nakashima, and K. Yamamoto. 2005. Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell. Journal of the American Chemical Society 127:13030–8.
  • Sayama, K., H. Sugihara, and H. Arakawa. 1998. Photo-electro chemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chemistry of Materials 10:3825–32.
  • Schmidt-Mende, L., and M. Grätzel. 2006. TiO2 pore filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 500:296–301.
  • Schmidt-Mende, L., J. E. Kroeze, J. R. Durrant, M. K. Nazeeruddin, and M. Grätzel. 2005. Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics. Nano Letters 9:1315–20. doi: 10.1021/nl050555y.
  • Seo, D. W., Y. D. Lim, S. H. Lee, S. C. Ur, and W. G. Kim. 2011. Novel imidazolium ionic liquids containing quaternary ammonium iodide or secondary amine for dye-sensitized solar cell. Bulletin of the Korean Chemical Society 32 (8):2633–6.
  • Seo, J., W. J. Kim, S. J. Kim, K. S. Lee, A. N. Cartwright, and P. N. Prasad. 2009. Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand. Applied Physics Letters 94 (13):133302. ISSN 0003–6951.
  • Shah, A. V., H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat. 2004. Thin-film silicon solar cell technology. Progress in Photovoltaics: Research and Applications, Special Issue: Progress in Thin-film Solar Cells 12 (2–3):113–42. doi: 10.1002/pip.533
  • Shaheen, S. E., C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen. 2001. 2.5% efficient organic plastic solar cells. Applied Physics Letters 78:841–3.
  • Shalom, M., S Dor, S. Ruehle, L. Grinis, and A. Zaban. 2009. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. The Journal of Physical Chemistry C 113 (9):3895–8. doi: 10.1021/jp8108682
  • Sharp. 2013. Sharp solar cell efficiency record - Another one (44.4%). Read more @ http://solarlove.org/sharp-solar-cell-efficiency-record-another-one-44–4/
  • Sheehan, S. W., H. Noh, G. W. Brudvig, H. Cao, and C. A. Schmuttenmaer. 2013. Plasmonic enhancement of dye-sensitized solar cells using core-shell-shell nanostructures. The Journal of Physical Chemistry C 117 (2):927–4.
  • Sheng, X., J. Zhai, L. Jiang, and D. Zhu. 2009. Enhanced photo-electro chemical performance of ZnO photoanode with scattering hollow cavities. Applied Physics A 96 (2):473–9.
  • Sicot, L., C. Fiorini, A. Lorin, N. M. Nunzi, P. Raimond, and C. Sentein. 1999. Dye sensitized polythiophene solar cells. Synthetic Metals 102:991–2.
  • Sih, B. C., and M. O. Wolf. 2007. CdSe nanorods functionalized with thiol-anchored oligothiophenes. The Journal of Physical Chemistry C 111 (46):17184–92.
  • Sirimanne, P. M., T. Jeranko, P. Bogdanoff, S. Fiechter, and H. Tributsch. 2003. On the photo-degradation of dye sensitized solid-state TiO2|dye|CuI cells. Semiconductor Science and Technology 18:708–12.
  • Smestad, G., S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert, and E. Moons. 2003. A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices. Solar Energy Materials & Solar Cells 76:85–105.
  • Smith, D. K. 1999. Supra-molecular dendritic solubilization of a hydrophilic dye and tuning of its optical properties. Chemical Communications 1685–6.
  • Snaith, H. J. 2010. Estimating the maximum attainable efficiency in dye-sensitized solar cells. Advanced Functional Materials 20 (1):13–19. doi:10.1002/ adfm.200901476
  • Solar-101. http://www.statesadvancingsolar.org/solar-101/benefits-of-solar
  • Solbrand, A., S. Södergren, H. Lindström, H. Rensmo, A. Hagfeldt, and S. -L. Lindquist. 1997. Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents. The Journal of Physical Chemistry B 101:2514–18.
  • Sommeling P. M., M. Späth, J. Kroon, R. Kinderman, and J. van Roosmalen. 2000. Flexible dye-sensitized nanocrystalline TiO2 solar cells, [ECN-RX-00–020]; http://www.ecn.nl/docs/library /report/2000 /rx00020.pdf
  • Song, M.Y., Y. R. Ahn, S. M. Jo, and D. Y. Kimb. 2005. TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Applied Physics Letters 87 (1–3):113113.
  • Stanier, C. A., M. J. O’Connell, W. Clegg, and H. L. Anderson. 2001. Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling. Chemical Communications 493–4.
  • Stathatos, E. and D. D. Dionysiou. 2010. http://www.syreen.gov.sy /archive/docs/File/ICRE8–5-2010/ICRE-ARTICLES/Photovoltaic% 20Conversion%20of%20Solar%20Energy%20axe/009–048.pdf
  • Steigerwald, M. L., and L. Eisrus. 1990. Semiconductor crystallites: a class of large molecules. Accounts of Chemical Research 23:183.
  • Stoumpos, C. C., C. D. Malliakas, and M. G. Kanatzidis. 2013. Semi-conducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photo-luminescent properties. Inorganic Chemistry 52 (15):9019–38. doi: 10.1021/ic401215x
  • Stranks, S. D., G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith. 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 341–344.
  • Subbiah, T., G. S. Bhat, R. W. Tock, S. Parameswaran, and S. Ramkumar. 2005. Electrospinning of nanofibers. Journal of Applied Polymer Science 96:557–69.
  • Sun, B., and N. C. Greenham. 2006. Improved efficiency of photo- voltaics based on CdSe nanorods and poly (3-hexylthiophene) nano fibers. Physical Chemistry Chemical Physics 8:3557–60. doi: 10.1039/B604734N
  • Sun, B., H. J. Snaith, A. Dhoot, S. Westenhoff, and N. C. Greenham. 2005. Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. Journal of Applied Physics 97:014914.
  • Suresh, T., G. Rajkumar, S. P. Singh, P. Y. Reddy, A. Islam, L. Han, and M. Chandrasekharam. 2013. Novel ruthenium sensitizer with multiple butadiene equivalent thienyls as conjugation on ancillary ligand for dye-sensitized solar cells. Organic Electronics 14 (9), 2243–8. ; doi: 10.1016/j.orgel.2013.04.048
  • Suzuki, K., M. Yamaguchi, M. Kumagai, and S. Yanagida. 2003. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chemistry Letters 32:28–9.
  • Sze, S. M. 1981. Physics of Semiconductor Devices, New York: John Wiley & Sons.
  • Talapin, D. V., J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko. 2010. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews 110 (1):389–458.
  • Tanaka, K., T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura. 2003. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 and CH3NH 3PbI3. Solid State Communications 127 (9–10):619–23.
  • Teng, C., X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, and L. Sun. 2009. Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br–/Br3– electrolytes. Organic Letters 11:5542–5.
  • Tennakone, K., G. K. R. Senadeera, D. De Silva, and I. R. M. Kottegoda. 2000. Highly stable dye-sensitized solid-state solar cell with the semiconductor 3CuBr 3S(C4H9)2 as the hole collector. Applied Physics Letters 77:2367–9.
  • Tennakone, K., G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and P. M. Sirimanne. 1995. A dye-sensitized nano-porous solid-state photovoltaic cell. Semiconductor Science and Technology 10:1689­93.
  • Tennakone, K., G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha, and V. P. S. Perera. 1998. A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. Journal of Physics D: Applied Physics 31:1492­-6.
  • Tennakone, K., V. P. S. Perera, I. R. M. Kottegoda, L. A. A. De Silva, G. R. R. A. Kumara, and A. Konno. 2001. Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. Journal of Electronic Materials 30:992­-6.
  • Thomas, K. R. J., J. T. Lin, Y. -C. Hsuc, and K.-C. Ho. 2005. Organic dyes containing thienylfluorene conjugation for solar cells. Chemical Communications 4098–100.
  • Tian, H., and F. Meng. 2005. Organic photovoltaics: Mechanisms, materials, and devices, eds. S.-S. Sun and N. S. Sariciftci. London: CRC.
  • Tian, H., X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt and L. Sun. 2007. Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chemical Communications 3741–3.
  • Tian, H., L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, and S. Dai. 2010a. Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. The Journal of Physical Chemistry C 114:1627–32.
  • Tian, H., X. Jiang, Z. Yu, L. Kloo, A. Hagfeldt, and L. Sun. 2010b. Efficient organic-dye-sensitized solar cells based on an iodine-free electrolyte. Angewandte Chemie International Edition 49:7328–31.
  • Toccoli, T., A. Boschetti, C. Corradi, L. Guerini, M. Mazzola, and S. Iannotta. 2003. Co-deposition of phthalocyanines and fullerene by supersonic molecular beam epitaxy (SuMBE) characterization and prototype devices. Synthetic Metals 138 (1–2):3–7.
  • Tong, F., K. Kim, D. Martinez, R. Thapa, A. Ahyi, J. Williams, D.-J. Kim, S. Lee, E. Lim, K. K. Lee, and M. Park. 2012. Flexible organic/ inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array. Semiconductor Science and Technology 27:105005. doi:10.1088/0268–1242/ 27/10/105005
  • Tsao, H. N., C. Yi, T. Moehl, J. H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel. 2011. Cyclopentadithiophene Bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-Cobalt bipyridine redox couple. ChemSusChem 4 (5):591–4.
  • Ueno, S., and S. Fujihara. 2012. Effective sol-gel nanocoatings on ZnO electrodes for suppressing recombination in dye-sensitized solar cells. International Journal of Photoenergy Article ID: 268173. doi:10.1155/2012/268173
  • van Beek, R., A. P. Zoombelt, L. W. Jenneskens, C. A. van Walree, C. de Mello Doneg, D. Veldman, and R. A. J. Janssen. 2006. Side chain mediated electronic contact between a tetrahydro-4H-thiopyran-4-ylidene-appended polythiophene and CdTe quantum dots. Chemistry - A European Journal 12 (31):8075–83.
  • van de Lagemaat, J., N.-G. Park, and A. J. Frank. 2000. Influence of electrical potential distribution, charge transport, and recombination on the photo-potential, photocurrent and conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques. The Journal of Physical Chemistry B 104:2044–52.
  • Velten, J., A. J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, and A. Zakhidov. 2012. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23:085201.
  • Vogel, R., P. Hoyer, and H. Weller. 1994. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry A 98:3183–8.
  • Vougioukalakis, G. C., A. I. Philippopoulos, T. Stergiopoulos, and P. Falaras. 2011. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews 255:2602–21. doi: 10.1016/ j.ccr.2010.11.006
  • Wachter, P., M. Zistler, C. Schreiner, M. Berginc, U. O. Krasovec, D. Gerhard, P. Wasserscheid, A. Hinsch, and H. J. Gores. 2008. Characterization of DSSC-electrolytes based on 1-ethyl-3-methylimidazolium dicyanamide: Measurement of triiodide diffusion coefficient, viscosity and photovoltaic performance. Journal of Photochemistry and Photobiology A: Chemistry 197:25–33.
  • Wan, Z., C. Jia, L. Zhou, W. Huo, X. Yao, and Y. Shi. 2012. Influence of different arylamine electron donors in organic sensitizers for dye-sensitized solar cells. Dyes and Pigments 95 (1):41–6.
  • Wang, C., L. Wang, Y. Shi, H. Zhang, and T. Ma. 2013. Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta 91:302–6.
  • Wang, M., N. Chamberland, L. Breau, J. E. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin, and M. Grätzel. 2010. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry 2 (5):385–9.
  • Wang, M., Y. Wang, and J. Li. 2011. ZnO nanowire arrays coating on TiO2 nanoparticles as a composite photoanode for a high efficiency DSSC. Chemical Communications 47 (40):11246–8. doi:10.1039/c1cc15310b
  • Wang, P., C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel. 2005. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cell. Journal of the American Chemical Society 127 (3):808–9.
  • Wang, P., R. Humphry-Baker, J. E. Moser, S. M. Zakeeruddin, and M. Grätzel. 2004. Amphiphilic polypyridyl ruthenium complexes with substituted 2,2’-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells. Chemistry of Materials 16 (17):3246–51.
  • Wang, P., S. M. Zakeeruddin, I. Exnar, and M. Grätzel. 2002. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications 2972–3. DOI:10.1039/B209322G
  • Wang, Q., J. E. Moser, and M. Grätzel. 2005. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. The Journal of Physical Chemistry B 109:14945–53.
  • Wang, S. -F., K. K. Rao, T. C. K. Yang, and H.-P. Wang. 2011a. Investigation of nitrogen doped diamond like carbon films as counter electrodes in dye sensitized solar cells. Journal of Alloys and Compounds 509 (5):1969–74.
  • Wang, Y. -Q., S. -G. Chen, X. -H. Tang, O. Palchik, A. Zaban, Y. Koltypin, and A. Gedanken. 2001. Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells. Journal of Materials Chemistry 11 (2):521–6.
  • Wang, Y. 2009. Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 93:1167–75.
  • Wang, Z. -S., Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara. 2007. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by co-adsorption of deoxycholic acid. The Journal of Physical Chemistry C 111:7224–30.
  • Wang, H., G. Liu, X. Li, P. Xiang, Z. Ku, Y. Rong, M. Xu, L. Liu, M. Hu, Y. Yang, and H. Han. 2011b. Highly efficient poly (3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy & Environmental Science 4:2025–9.
  • Wang, P., S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, and M. Grätzel. 2004a. A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. Journal of the American Chemical Society 126:7164–5.
  • Wang, P., S. M. Zakeeruddin, P. Comte. I. Exnar, and M. Grätzel. 2003a. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society 125:1166–7.
  • Wang, P., S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, and M. Grätzel. 2004b. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Advanced Materials 16 (20):1806–11.
  • Wang, P., S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, and M Grätzel. 2003b. Molecular-Scale Interface Engineering of TiO2 nano crystals: improve the efficiency and stability of dye-sensitized solar cells. Advanced Materials 15 (24):2101–4.
  • Wang, P., S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel. 2003c. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials 2 (6):402–7.
  • Wang, P., S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Graetzel. 2003d. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexa decylmalonic acid on TiO2 nanocrystals. The Journal of Physical Chemistry B 107:14336–41.
  • Wank, J. R., S. M. George, and A. W. Weimer. 2004. Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD. Powder Technology 142:59–69.
  • Watson, D. F., and G. J. Meyer. 2004. Cation effects in nanocrystalline solar cells. Coordination Chemistry Reviews 248:1391–1406.
  • Watt, A. A. R., D. Blake, J. H. Warner, E. A. Thomsen, E. L. Tavenner, H. Rubinsztein-Dunlop, and P. Meredith. 2005. Lead sulfide nanocrystal: conducting polymer solar cells. Journal of Physics D: Applied Physics 38 (12):2006–12.
  • Weller, H. 1993. Colloidal semiconductor Q-particles: Chemistry in the transition region between solid state and molecules. Angewandte Chemie International Edition 32:41–53.
  • Willner, I., Y. Eichen, and B. Willner. 1994. Supramolecular semiconductor receptor assemblies: improved electron transfer at TiO2-β-Cyclodextrin colloid interfaces. Research on Chemical Intermediates 20:681–700.
  • Winder, C. 2001. Sensitization of Low Bandgap Polymer Bulk Heterojunction Solar Cells. Diploma thesis submitted to Universitat Linz, Netzwerk fur Forschung, Lehre und Praxis. Available at https://www.jku.at/JKU_Site/JKU/ipc/content/e166717/e180430/e180447/e180454/DP_Winder.pdf.
  • Wolfbauer, G., A. M. Bond, J. C. Eklund, and D. R. MacFarlane. 2001. A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye-sensitized solar cells. Solar Energy Materials and Solar Cells 70:85–101.
  • Wu, J., S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, and T. Sato. 2008. An All-Solid-State Dye-Sensitized Solar Cell-Based Poly (N-alkyl-4-vinyl-pyridine iodide) Electrolyte with Efficiency of 5.64%. Journal of the American Chemical Society 130 (35):11568–9.
  • Wu, J., Z. Lan, J. Lin, M. Huang, and P. Li. 2007. Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources 173:585–91.
  • Wu, M., X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel, and T. Ma. 2012a. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. Journal of the American Chemical Society 134 (7):3419–28. doi: 10.1021/ja209657v
  • Wu, H., Z. Lv, S. Hou, X. Cai, D. Wang, H. Kafafy, Y. Fu, C. Zhang, Z. Chu, and D. Zou. 2013. A new ionic liquid organic redox electrolyte for high-efficiency iodine-free dye-sensitized solar cells. Journal of Power Sources 221:328–33.
  • Wu, H. -P., Z.-W. Ou, T.-Y. Pan, C.-M. Lan, W. -K. Huang, H. -W. Lee, N. M. Reddy, C. -T. Chen, W. -S. Chao, C. -Y. Yeh, and E. W. -G. Diau. 2012b. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes. Energy & Environmental Science 5:8261–72.
  • Wu, C., B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy and G. Shvets. 2012c. Metamaterial-based integrated plasmonic absorber /emitter for solar thermo-photovoltaic systems. Journal of Optics 14:024005. doi:10.1088/2040–8978/14/2/024005
  • Wu, B., X. Wu, C. Guan, K. F. Tai, E. K. L. Yeow, H. J. Fan, N. Mathews, and T. C. Sum. 2004. Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells. Nature Communications 4, Art. No:2004. doi:10.1038/ncomms3004
  • Xiang, P., X. Li, H. Wang, G. Liu, T. Shu, Z. Zhou, Z. Ku, Y. Rong, M. Xu, L. Liu, M. Hu, Y. Yang, W. Chen, T. Liu, M. Zhang, and H. Han. 2011. Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell. Nanoscale Research Letters 6 (1–5):606. doi:10.1186/ 1556–276X-6–606
  • Xing, G., N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum. 2013. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 18:344–7.
  • Xiong, H., X. Zhang, B. Dong, H. Lu, L. Zhao, L. Wan, G. Dai, and S. Wang. 2013. The preparation of carbon dots/ionic liquids-based electrolytes and their applications in quasi-solid-state dye-sensitized solar cells. Electrochimica Acta 88:100–6.
  • Xu, T., and Q. Qiao. 2011. Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy & Environmental Science 4:2700–20.
  • Xu, X., D. Huang, K. Cao, M. Wang, S. M. Zakeeruddin, and M. Grätzel. 2013. Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Scientific Reports 3: Article number: 1489. doi: 10.1038/srep01489
  • Xue, B. F., H. X. Wang, Y. S. Hu, H. Li, Z. X. Wang, Q. B. Meng, X. J. Huang, O. Sato, L. Q. Chen, and A. Fujishima. 2004. An alternative ionic liquid based electrolyte for dye-sensitized solar cells. Photochemical & Photobiological Sciences 3 (10):918–9.
  • Yang, J., C. Bao, J. Zhang, T. Yu, H. Huang, Y. Wei, H. Gao, G. Fu, J. Liu, and Z. Zou. 2013. In situ grown vertically oriented CuInS2 nano sheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells. Chemical Communications 49:2028–30.
  • Yang, H., Y. -F. Cheng, F.-Y. Li, Z.-G. Zhou, T. Yi, C.-H. Huang, and N.-Q. Jia. 2005. Quasi-solid-state dye-sensitized solar cells based on mesoporous silica SBA-15 framework materials. 2005. Chinese Physics Letters 22:2116. doi:10.1088/0256–307X/22/8/081
  • Yang, L., U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson. 2012. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics 14:779–89.
  • Yang, J., F. Zhang, and S. Meng 2011. Dye sensitized solar cells principles and new design, In Solar Cells - Dye-Sensitized Devices, ed. Leonid A. Kosyachenko, Rijeka, Croatia: InTech. Chapter 6.
  • Yen, Y. -S., Y. -C. Chen, H. -H. Chou, S.-T. Huang, and J. T. Lin. 2012. Novel organic sensitizers containing 2,6-difunctionalized anthracene unit for dye sensitized solar cells. Polymers 4 (3): 1443–61; doi: 10.3390/ polym403 1443
  • Yliniemi, K., D. Wragg, B. P. Wilson, H. N. McMurray, D. A. Worsley, P. Schmuki, and K. Kontturi. 2013. Formation of Pt/Pb nanoparticles by electro -deposition and redox replacement cycles on fluorine doped tin oxide glass. Electrochimica Acta 88:278–86.
  • Yoon, C. H., R. Vittal, J. Lee, W. S. Chae, and K. J. Kim. 2008. Enhanced performance of a dye-sensitized solar cell with an electro-deposited-Pt counter electrode. Electrochimica Acta 53 (6):2890–6.
  • Yoon, I.-N., H.-k. Song, J. Won, and Y. S. Kang. 2014. Shape dependence of SiO2 nanomaterials in a quasi-solid electrolyte for application in dye-sensitized solar cells. The Journal of Physical Chemistry C 118 (8):3918–24.
  • Yu, G., J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger. 1995. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270 (5243):1789–91.
  • Yu, P., J. Yan, J. Zhang, and L. Mao. 2005. Cost-effective electro deposition of Pt nanoparticles with ionic liquid droplet confined onto electrode surface as micro-media. Electrochemistry Communications 9:1139–44.
  • Yu, X., J. Song, Y. Fu, Y. Xie, X. Song, J. Sun, and X. Du. 2010. ZnS/ZnO hetero nanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry C 114:2380–4.
  • Yum, J. -H., E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J. -E. Moser, C. Yi, M. K. Nazeeruddin, and M. Grätzel. 2012. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Commuinications 3: Article No. 631. doi:10.1038/ncomms1655
  • Zaban, A., A. Meier, and B. A. Gregg. 1997. Electric potential distribution and short range screening in nanoporous TiO2 electrodes. The Journal of Physical Chemistry B 101:7985–90.
  • Zaban, A., O. I. Micic, B. A. Gregg, and A. J. Nozik. 1998. Photo- sensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14 (12):3153–6.
  • Zafer, C., K. Ocakoglu, C. Ozsoy, and S. Icli. 2009. Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: synthesis and photovoltaic properties. Electrochimica Acta 54 (24):5709–14.
  • Zerza, G. C.J. Brabec, G. Cerullo, S. De Silvestri, and N.S. Sariciftci. 2001. Ultrafast charge transfer in conjugated polymer-fullerene composites. Synthetic Metals 119:637–8.
  • Zhang, Q., and C. Guozhong. 2011. Nanostructured photo-electrodes for dye-sensitized solar cells. Nano Today 6:91–109.
  • Zhang, S., P. W. Cyr, S. A. McDonald, G. Konstantatos, and E. H. Sargent. 2005. Enhanced infrared photovoltaic efficiency in PbS nanocrystal /semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Applied Physics Letters 87:233101. http://dx.doi.org/10.1063/1.2137895
  • Zhang, Z., P. Chen, T. N. Murakami, S. M. Zakeeruddin, and M. Grätzel. 2008. The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical: an efficient, iodine- free redox mediator for dye-sensitized solar cells. Advanced Functional Materials 18:341–6.
  • Zhao, J., X. Shen, F. Yan, L. Qiu, S. Lee, and B. Sun. 2011. Solvent-free ionic liquid/poly (ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry 21:7326–30. doi: 10.1039/C1JM10346F
  • Zhao, J., X. Yang, M. Cheng, S. Li, and L. Sun. 2013. New Organic dyes with a phenanthrenequinone derivative as the π-conjugated bridge for dye-sensitized solar cells. The Journal of Physical Chemistry C 117 (25):12936–41. doi: 10.1021 /jp400011w
  • Zhao, Y., J. Zhai, S. Tan, L. Wang, L. Jiang, and D. Zhu. 2006. TiO2 micro/ nano-composite structured electrodes for quasi-solid-state dye-sensitized solar cells. Nanotechnology 17:2090–7.
  • Zhou, Y., M. Eck, C. VEIT, B. Zimmermann, F. Rauscher, P. Niyamakim, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, and M. Krüger. 2011. Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low band gap polymer PCPDTBT. Solar Energy Materials and Solar Cells 95:1232–1237.
  • Zhou, Y., M. Eck, and M. Krüger. 2010. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy & Environmental Science 3:1851–64.
  • Zhou, Y., Y. Li, H. Zhong, J. Hou, Y. Ding, C. Yang, and Y. Li. 2006. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1−xnanocrystals. Nanotechnology 17 (16):4041–7.
  • Zhou, Y., F.-S. Riehle, Y. Yuan, H. F. Schleiermacher, M. Niggemann, G. A. Urban, and M. Krüger M. 2010. Improved efficiency of hybrid solar cells based on non ligand-exchanged CdSe quantum dots and poly (3-hexyl thiophene). Applied Physics Letters 96:013304–3.
  • Zhou, Y.-F., W.-C. Xiang, S.-B. Fang, S. Chen S, X.-W. Zhou, J.-B. Zhang, and Y. Lin. 2009. Effect of poly (ether urethane) introduction on the performance of polymer electrolyte for all-solid-state dye-sensitized solar cells. Chinese Physics Letters 26 (12): 128201.
  • Zhou, Z., S. Yuan, J. Fan, Z. Hou, W. Zhou, Z. Du, and S. Wu. 2012. CuInS2 quantum dot-sensitized TiO2 nanorod array photo electrodes: Synthesis and performance optimization. Nanoscale Res. Lett. 7(1):652.
  • Zhu, H., G. Huang, and X. Ruan. 2012. Stability of dye sensitized solar cells with counter electrode on nickel-plated stainless steel substrates. International Journal of Green Energy 01. doi:10.1080/15435075.2011. 653844
  • Zhu, K., N. R. Neale, A. Miedaner, and A. J. Frank. 2007. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotube arrays. Nano Letters 7 (1):69–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.