381
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Off-design performance analysis of a transcritical CO2 Rankine cycle with LNG as cold source

, , &

References

  • Ahmadi, M. H., M. Mehrpooya, and F. Pourfayaz. 2016a. Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Energy Conversion and Management 119:422–34. doi:10.1016/j.enconman.2016.04.062.
  • Ahmadi, M. H., M. Mehrpooya, and F. Pourfayaz. 2016b. Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Applied Thermal Engineering 109:640–52. doi:10.1016/j.applthermaleng.2016.08.141.
  • Ahmadi, M. H., A. Mohammadi, F. Pourfayaz, M. Mehrpooya, M. Bidi, A. Valero, and S. Uson. 2016c. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas. Journal of Natural Gas Science and Engineering 34:428–38. doi:10.1016/j.jngse.2016.07.014.
  • Baik, Y.-J., M. Kim, K. C. Chang, and S. J. Kim. 2011. Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source. Applied Energy 88 (3):892–98. doi:10.1016/j.apenergy.2010.08.029.
  • Calise, F., C. Capuozzo, A. Carotenuto, and L. Vanoli. 2014. Thermoeconomic analysis and off-design performance of an organic Rankine cycle powered by medium-temperature heat sources. Solar Energy 103:595–609. doi:10.1016/j.solener.2013.09.031.
  • Chen, H., D. Yogi Goswami, M. M. Rahman, and E. K. Stefanakos. 2011. Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion. Applied Energy 88 (8):2802–08. doi:10.1016/j.apenergy.2011.01.029.
  • Choi, B. C. 2016. Thermodynamic analysis of a transcritical CO2 heat recovery system with 2-stage reheat applied to cooling water of internal combustion engine for propulsion of the 6800 TEU container ship. Energy 107:532–41. doi:10.1016/j.energy.2016.03.116.
  • Dai, Y., J. Wang, and L. Gao. 2009. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management 50 (3):576–82. doi:10.1016/j.enconman.2008.10.018.
  • Gabbrielli, R. 2012. A novel design approach for small scale low enthalpy binary geothermal power plants. Energy Conversion and Management 64:263–72. doi:10.1016/j.enconman.2012.04.017.
  • Incropera, F. P., and D. P. DeWitt. 2002. Fundamentals of heat and mass transfer. Newyork: John Wiley and Sons Inc..
  • Kang, S. H. 2012. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid. Energy 41 (1):514–24. doi:10.1016/j.energy.2012.02.035.
  • Lee, S., and B. C. Choi. 2016. Thermodynamic assessment of integrated heat recovery system combining exhaust-gas heat and cold energy for LNG regasification process in FSRU vessel. Journal of Mechanical Science and Technology 30 (3):1389–98. doi:10.1007/s12206-016-0246-y.
  • Lemmon, E., M. Huber, and M. McLinden. 2010. NIST Standard REFERENCE DATABASE 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 9.0, Standard Reference Data Program. Gaithersburg, MD: National Institute of Standards and Technology. There is no corresponding record for this reference.
  • Li, L., Y. T. Ge, X. Luo, and S. A. Tassou. 2016. Thermodynamic analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low grade heat to power energy conversion. Applied Thermal Engineering 106:1290–99. doi:10.1016/j.applthermaleng.2016.06.132.
  • Liu, B.-T., K.-H. Chien, and C.-C. Wang. 2004. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29 (8):1207–17. doi:10.1016/j.energy.2004.01.004.
  • Lolos, P. A., and E. D. Rogdakis. 2009. A Kalina power cycle driven by renewable energy sources. Energy 34 (4):457–64. doi:10.1016/j.energy.2008.12.011.
  • Madhawa Hettiarachchi, H. D., M. Golubovic, W. M. Worek, and Y. Ikegami. 2007. The Performance of the Kalina Cycle System 11(KCS-11) With Low-Temperature Heat Sources. Journal of Energy Resources Technology 129 (3):243. doi:10.1115/1.2748815.
  • Mondal, S., and S. De. 2015. Transcritical CO2 power cycle---Effects of regenerative heating using turbine bleed gas at intermediate pressure. Energy 87:95–103. doi:10.1016/j.energy.2015.04.103.
  • Mondal, S., and S. De. 2017. Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic analysis. Energy 121:832–40. doi:10.1016/j.energy.2016.12.126.
  • Pei, G., J. Li, Y. Li, D. Wang, and J. Ji. 2011. Construction and dynamic test of a small-scale organic rankine cycle. Energy 36 (5):3215–23. doi:10.1016/j.energy.2011.03.010.
  • Pioro, I. L., H. F. Khartabil, and R. B. Duffey. 2004. Heat transfer to supercritical fluids flowing in channels—Empirical correlations (survey). Nuclear Engineering and Design 230 (1––3):69–91. doi:10.1016/j.nucengdes.2003.10.010.
  • Rachedi, M., M. Feidt, M. Amirat, and M. Merzouk. 2016. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source. Applied Thermal Engineering 107:379–85. doi:10.1016/j.applthermaleng.2016.06.115.
  • Romero Gómez, M., J. Romero Gómez, L. M. López-González, and L. M. López-Ochoa. 2016. Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture. Energy 105:32–44. doi:10.1016/j.energy.2015.09.011.
  • Shah, R. K., and D. P. Sekulic. 2003. Fundamentals of heat exchanger design. New York: John Wiley and Sons. Inc..
  • Shu, G., L. Shi, H. Tian, S. Deng, X. Li, and L. Chang. 2017. Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat. Applied Energy 186:423–35. doi:10.1016/j.apenergy.2016.03.049.
  • Shu, G., L. Shi, H. Tian, X. Li, G. Huang, and L. Chang. 2016. An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery. Applied Energy 176:171–82. doi:10.1016/j.apenergy.2016.05.053.
  • Song, Y., J. Wang, Y. Dai, and E. Zhou. 2012. Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink. Applied Energy 92:194–203. doi:10.1016/j.apenergy.2011.10.021.
  • Sun, Z., J. Wang, Y. Dai, and J. Wang. 2012. Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO2 power cycle. International Journal of Hydrogen Energy 37 (24):18731–39. doi:10.1016/j.ijhydene.2012.08.028.
  • Vélez, F., J. Segovia, F. Chejne, G. Antolín, A. Quijano, and M. Carmen Martín. 2011. Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle. Energy 36 (9):5497–507. doi:10.1016/j.energy.2011.07.027.
  • Walraven, D., B. Laenen, and W. D’haeseleer. 2014. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles. Energy Conversion and Management 83:177–87. doi:10.1016/j.enconman.2014.03.066.
  • Wang, J., J. Wang, Y. Dai, and P. Zhao. 2014. Thermodynamic analysis and optimization of a transcritical CO2 geothermal power generation system based on the cold energy utilization of LNG. Applied Thermal Engineering 70 (1):531–40. doi:10.1016/j.applthermaleng.2014.05.084.
  • Wang, J., Z. Yan, M. Wang, and Y. Dai. 2013. Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink. Energy 50:513–22. doi:10.1016/j.energy.2012.11.034.
  • Wang, X., and Y. Dai. 2016. An exergoeconomic assessment of waste heat recovery from a gas turbine-modular helium reactor using two transcritical CO2 cycles. Energy Conversion and Management 126:561–72. doi:10.1016/j.enconman.2016.08.049.
  • Wang, X., Y. Yang, Y. Zheng, and Y. Dai. 2017. Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application. Energy 119:971–82. doi:10.1016/j.energy.2016.11.044.
  • Wang, Y.-Z., Y.-X. Hua, and H. Meng. 2010. Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane. Journal of Thermophysics and Heat Transfer 24 (3):490–500. doi:10.2514/1.46769.
  • Wu, C., S.-S. Wang, X. Jiang, and J. Li. 2017. Thermodynamic analysis and performance optimization of transcritical power cycles using CO2-based binary zeotropic mixtures as working fluids for geothermal power plants. Applied Thermal Engineering 115:292–304. doi:10.1016/j.applthermaleng.2016.12.077.
  • Xia, G., Q. Sun, X. Cao, J. Wang, Y. Yu, and L. Wang. 2014. Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas). Energy 66:643–53. doi:10.1016/j.energy.2013.12.029.
  • Xue, X., C. Guo, X. Du, L. Yang, and Y. Yang. 2015. Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery. Energy 83:778–87. doi:10.1016/j.energy.2015.02.088.
  • Zhang, X.-R., H. Yamaguchi, and Y. Cao. 2010. Hydrogen production from solar energy powered supercritical cycle using carbon dioxide. International Journal of Hydrogen Energy 35 (10):4925–32. doi:10.1016/j.ijhydene.2009.11.011.
  • Zhang, X. R., H. Yamaguchi, D. Uneno, K. Fujima, M. Enomoto, and N. Sawada. 2006. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renewable Energy 31 (12):1839–54. doi:10.1016/j.renene.2005.09.024.
  • Zhao, P., J. Wang, Y. Dai, and L. Gao. 2015. Thermodynamic analysis of a hybrid energy system based on CAES system and CO2 transcritical power cycle with LNG cold energy utilization. Applied Thermal Engineering 91:718–30. doi:10.1016/j.applthermaleng.2015.08.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.