494
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of thermal performance of the parabolic trough solar collector systems based on GA-BP neural network model

, , , &

References

  • Al-Shamisi, M. H., A. H. Assi, and H. A. N. Hejase. 2013. Artificial neural networks for predicting global solar radiation in al ain city - uae. International Journal of Green Energy 10 (5):443–56. doi:10.1080/15435075.2011.641187.
  • Arslan, O., and O. Yetik. 2011. ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study. Applied Thermal Engineering 31 (17–18):3922–28. doi:10.1016/j.applthermaleng.2011.07.041.
  • Banos, R., F. Manzano-Agugliaro, F. G. Montoya, C. Gil, A. Alcayde, and J. Gomez. 2011. Optimization methods applied to renewable and sustainable energy: A review. Renewable & Sustainable Energy Reviews 15 (4):1753–66. doi:10.1016/j.rser.2010.12.008.
  • Benli, H. 2013. Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks. International Journal of Heat and Mass Transfer 60:1–7. doi:10.1016/j.ijheatmasstransfer.2012.12.042.
  • Boukelia, T. E., O. Arslan, and M. S. Mecibah. 2016. ANN-based optimization of a parabolic trough solar thermal power plant. Applied Thermal Engineering 107:1210–18. doi:10.1016/j.applthermaleng.2016.07.084.
  • Boukelia, T. E., O. Arslan, and M. S. Mecibah. 2017. Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach. Renewable Energy 105:324–33. doi:10.1016/j.renene.2016.12.081.
  • Caner, M., E. Gedik, and A. Kecebas. 2011. Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Systems with Applications 38 (3):1668–74. doi:10.1016/j.eswa.2010.07.090.
  • Cetiner, C., F. Halici, H. Cacur, and I. Taymaz. 2005. Generating hot water by solar energy and application of neural network. Applied Thermal Engineering 25 (8–9):1337–48. doi:10.1016/j.applthermaleng.2004.09.004.
  • Cheng, Z. D., Y. L. He, B. C. Du, K. Wang, and Q. Liang. 2015. Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm. Applied Energy 148:282–93. doi:10.1016/j.apenergy.2015.03.079.
  • Esen, H., M. Inalli, A. Sengur, and M. Esen. 2008. Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing. International Journal of Thermal Sciences 47 (4):431–41. doi:10.1016/j.ijthermalsci.2007.03.004.
  • Farkas, I., and P. Geczy-Vig. 2003. Neural network modelling of flat-plate solar collectors. Computers and Electronics in Agriculture 40 (1–3):87–102. doi:10.1016/S0168-1699(03)00013-9.
  • Fernandez-Garcia, A., E. Zarza, L. Valenzuela, and M. Perez. 2010. Parabolic-trough solar collectors and their applications. Renewable & Sustainable Energy Reviews 14 (7):1695–721. doi:10.1016/j.rser.2010.03.012.
  • Geczy-Vig, P., and I. Farkas. 2010. Neural network modelling of thermal stratification in a solar DHW storage. Solar Energy 84 (5):801–06. doi:10.1016/j.solener.2010.02.003.
  • Gorjian, S., T. T. Hashjin, B. Ghobadian, and A. Banakar. 2015. A thermal performance evaluation of a medium-temperature point-focus solar collector using local weather data and artificial neural networks. International Journal of Green Energy 12 (5):493–505. doi:10.1080/15435075.2013.848405.
  • Kalogirou, S. A. 2001. Artificial neural networks in renewable energy systems applications: A review. Renewable and Sustainable Energy Reviews 5 (4):373–401. doi:10.1016/s1364-0321(01)00006-5.
  • Kalogirou, S. A. 2006. Prediction of flat-plate collector performance parameters using artificial neural networks. Solar Energy 80 (3):248–59. doi:10.1016/j.solener.2005.03.003.
  • Kalogirou, S. A., E. Mathioulakis, and V. Belessiotis. 2014. Artificial neural networks for the performance prediction of large solar systems. Renewable Energy 63:90–97. doi:10.1016/j.renene.2013.08.049.
  • Kalogirou, S. A., S. Panteliou, and A. Dentsoras. 1999. Artificial neural networks used for the performance prediction of a thermosiphon solar water heater. Renewable Energy 18 (1):87–99. doi:10.1016/s0960-1481(98)00787-3.
  • Kurt, H., K. Atik, M. Ozkaymak, and Z. Recebli. 2008. Thermal performance parameters estimation of hot box type solar cooker by using artificial neural network. International Journal of Thermal Sciences 47 (2):192–200. doi:10.1016/j.ijthermalsci.2007.02.007.
  • Li, M., C. M. Xu, X. Ji, P. Zhang, and Q. F. Yu. 2015. A new study on the end loss effect for parabolic trough solar collectors. Energy 82:382–94. doi:10.1016/j.energy.2015.01.048.
  • Mashaly, A. F., and A. A. Alazba. 2016. Comparison of ANN, MVR, and SWR models for computing thermal efficiency of a solar still. International Journal of Green Energy 13 (10):1016–25. doi:10.1080/15435075.2016.1206000.
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science 1 (1):3–17. doi:10.1016/0894-1777(88)90043-x.
  • Mohanraj, M., S. Jayaraj, and C. Muraleedharan. 2012. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems-A review. Renewable & Sustainable Energy Reviews 16 (2):1340–58. doi:10.1016/j.rser.2011.10.015.
  • Mohanraj, M., S. Jayaraj, and C. Muraleedharan. 2015. Applications of artificial neural networks for thermal analysis of heat exchangers – A review. International Journal of Thermal Sciences 90:150–72. doi:10.1016/j.ijthermalsci.2014.11.030.
  • Premalatha, N., and A. Valanarasu. 2016. Artificial neural network based performance assessment of thermosyphon solar water heating system. Advances in Natural and Applied Sciences 10 (4):160–67.
  • Rahman, M. M., A. G. M. B. Mustayen, S. Mekhilef, and R. Saidur. 2015. The optimization of solar drying of grain by using a genetic algorithm. International Journal of Green Energy 12 (12):1222–31. doi:10.1080/15435075.2014.890106.
  • Ramedani, Z., M. Omid, and A. Keyhani. 2013. Modeling solar energy potential in a Tehran province using artificial neural networks. International Journal of Green Energy 10 (4):427–41. doi:10.1080/15435075.2011.647172.
  • Souliotis, M., S. Kalogirou, and Y. Tripanagnostopoulos. 2009. Modelling of an ICS solar water heater using artificial neural networks and TRNSYS. Renewable Energy 34 (5):1333–39. doi:10.1016/j.renene.2008.09.007.
  • Sozen, A., T. Menlik, and S. Unvar. 2008. Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Systems with Applications 35 (4):1533–39. doi:10.1016/j.eswa.2007.08.080.
  • Tzuc, O. M., A. Bassam, M. A. E. Soberanis, E. Venegas-Reyes, O. A. Jaramillo, L. J. Ricalde, … Y. El Hamzaoui. 2017. Modeling and optimization of a solar parabolic trough concentrator system using inverse artificial neural network. [Article]. Journal of Renewable and Sustainable Energy 9 (1):15. doi:10.1063/1.4974778.
  • Vikram, T. S., and K. S. Reddy. 2015. Investigation of convective and radiative heat losses from modified cavity based solar dish steam generator using ANN. International Journal of Thermal Sciences 87:19–30. doi:10.1016/j.ijthermalsci.2014.08.005.
  • Xiao, X., P. Zhang, D. D. Shao, and M. Li. 2014. Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector. Energy Conversion and Management 86:49–59. doi:10.1016/j.enconman.2014.05.001.
  • Yaici, W., and E. Entchev. 2014. Performance prediction of a solar thermal energy system using artificial neural networks. Applied Thermal Engineering 73 (1):1348–59. doi:10.1016/j.applthermaleng.2014.07.040.
  • Zhou, W., C. Z. Lou, Z. S. Li, L. Lu, and H. X. Yang. 2010. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy 87 (2):380–89. doi:10.1016/j.apenergy.2009.08.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.