190
Views
0
CrossRef citations to date
0
Altmetric
Articles

Production of highly upgraded bio-oil by microwave–metal interaction pyrolysis of biomass in a copper coil reactor

, , , , , & show all
Pages 758-765 | Received 22 Aug 2017, Accepted 25 Sep 2018, Published online: 10 Oct 2018

References

  • Agarwal, A. K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science 33 (3):233–71. doi:10.1016/j.pecs.2006.08.003.
  • Ali, N., B. L. Chaudhary, and N. L. Panwar. 2014. The fungal pre-treatment of maize cob heart and water hyacinth for enhanced biomethanation. International Journal of Green Energy 11:40–49. doi:10.1080/15435075.2012.740707.
  • Arun, N., R. V. Sharma, and A. K. Dalai. 2015. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews 48:240–55. doi:10.1016/j.rser.2015.03.074.
  • Balcik-Canbolat, C., B. Ozbey, N. Dizge, and B. Keskinler. 2017. Pyrolysis of commingled waste textile fibers in a batch reactor: Analysis of the pyrolysis gases and solid product. International Journal of Green Energy 14:289–94. doi:10.1080/15435075.2016.1255634.
  • Basagiannis, A. C., and X. E. Verykios. 2007. Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2 O3 catalysts. Catalysis Today 127 (1):256–64. doi:10.1016/j.cattod.2007.03.025.
  • Boateng, A. A., D. E. Daugaard, N. M. Goldberg, and K. B. Hicks. 2007. Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production. Industrial & Engineering Chemistry Research 46 (7):1891–97. doi:10.1021/ie0614529.
  • Borges, F. C., Z. Du, Q. Xie, J. O. Trierweiler, Y. Cheng, Y. Wan, Y. Liu, R. Zhu, X. Lin, P. Chen, et al. 2014. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresource Technology 156:267–74. doi:10.1016/j.biortech.2014.01.038.
  • Brown, A. L., D. C. Dayton, M. R. Nimlos, and J. W. Daily. 2001. Design and characterization of an entrained flow reactor for the study of biomass pyrolysis chemistry at high heating rates. Energy & Fuels 15 (5):1276–85. doi:10.1021/ef010083k.
  • Buchelnikov, V. D., D. V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A. P. Anzulevich, I. V. Bychkov, and A. Inoue. 2008. Heating of metallic powders by microwaves. Experiment and theory. Journal of Applied Physics 104 (11):113505. doi:10.1063/1.3009677.
  • Burton, R., X. Fan, and G. Austic. 2010. Evaluation of two-step reaction and enzyme catalysis approaches for biodiesel production from spent coffee grounds. International Journal of Green Energy 7 (5):530–36. doi:10.1080/15435075.2010.515444.
  • Caratzoulas, S., D. G. Vlachos, and M. Tsapatsis. 2006. On the role of tetramethylammonium cation and effects of solvent dynamics on the stability of the cage-like silicates Si6O156-and Si8O208-in aqueous solution. A molecular dynamics study. Journal of the American Chemical Society 128 (2):596–606. doi:10.1021/ja0561136.
  • Chandrasekaran, S., T. Basak, and S. Ramanathan. 2011. Experimental and theoretical investigation on microwave melting of metals. Journal of Materials Processing Technology 211 (3):482–87. doi:10.1016/j.jmatprotec.2010.11.001.
  • Choudhary, A. K., H. Chelladurai, and C. Kannan. 2016. Performance analysis of bioethanol (Water Hyacinth) on diesel engine. International Journal of Green Energy 13:1369–79. doi:10.1080/15435075.2016.1185724.
  • Chuah, T. G., A. G. K. Wan Azlina, Y. Robiah, and R. Omar. 2006. Biomass as the renewable energy sources in Malaysia: An overview. International Journal of Green Energy 3 (3):323–46. doi:10.1080/01971520600704779.
  • Czernik, S., and A. V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 18 (2):590–98. doi:10.1021/ef034067u.
  • Das, P., M. Dinda, N. Gosai, and S. Maiti. 2015. High energy density bio-oil via slow pyrolysis of Jatropha curcas shells. Energy & Fuels 29 (7):4311–20. doi:10.1021/acs.energyfuels.5b00160.
  • De la Hoz, A., A. Diaz-Ortiz, and A. Moreno. 2005. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews 34 (2):164–78. doi:10.1039/B411438H.
  • Fermoso, J., B. Arias, M. G. Plaza, C. Pevida, F. Rubiera, J. J. Pis, F. García-Peña, and P. Casero. 2009. High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Processing Technology 90 (7):926–32. doi:10.1016/j.fuproc.2009.02.006.
  • Guoxin, H., and H. Hao. 2009. Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass and Bioenergy 33 (5):899–906. doi:10.1016/j.biombioe.2009.02.006.
  • Helms, B., and J. M. Frechet. 2006. The dendrimer effect in homogeneous catalysis. Advanced Synthesis & Catalysis 348:1125–48. doi:10.1002/adsc.200606095.
  • Herrero, M. A., J. M. Kremsner, and C. O. Kappe. 2008. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. The Journal of Organic Chemistry 73 (1):36–47. doi:10.1021/jo7022697.
  • Hussain, Z., K. M. Khan, N. Basheer, and K. Hussain. 2011. Co-liquefaction of Makarwal coal and waste polystyrene by microwave–Metal interaction pyrolysis in copper coil reactor. Journal of Analytical and Applied Pyrolysis 90 (1):53–55. doi:10.1016/j.jaap.2010.10.002.
  • Hussain, Z., K. M. Khan, and K. Hussain. 2010. Microwave–Metal interaction pyrolysis of polystyrene. Journal of Analytical and Applied Pyrolysis 89 (1):39–43. doi:10.1016/j.jaap.2010.05.003.
  • Hussain, Z., K. M. Khan, A. Khan, S. Ullah, A. Karim, and S. Perveen. 2013. The conversion of biomass into liquid hydrocarbon fuel by two step pyrolysis using cement as catalyst. Journal of Analytical and Applied Pyrolysis 101:90–95. doi:10.1016/j.jaap.2013.02.007.
  • Hussain, Z., K. M. Khan, S. Perveen, K. Hussain, and W. Voelter. 2012. The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Processing Technology 94 (1):145–50. doi:10.1016/j.fuproc.2011.10.009.
  • Hussain, Z., S. A. Sulaiman, H. Gul, S. Farooq, K. M. Khan, H. Gulab, and M. Y. Naz. 2016a. Conversion of waste‐soap and soap‐like materials into diesel and gasoline by catalytic pyrolysis using virgin soap as model. The Canadian Journal of Chemical Engineering 94 (1):94–100. doi:10.1002/cjce.22368.
  • Hussain, Z., S. A. Sulaiman, A. Khan, K. M. Khan, S. Perveen, and M. Y. Naz. 2016b. Two-step pyrolysis of spirogyra for fuels using cement catalytic. Waste and Biomass Valorization 7 (6):1481–89. doi:10.1007/s12649-016-9552-y.
  • Koufopanos, C. A., N. Papayannakos, G. Maschio, and A. Lucchesi. 1991. Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. The Canadian Journal of Chemical Engineering 69 (4):907–15. doi:10.1002/cjce.5450690413.
  • Kriegsmann, G. A. 1992. Thermal runaway in microwave heated ceramics: A one‐dimensional model. Journal of Applied Physics 71 (4):1960–66. doi:10.1016/j.biombioe.2009.02.006.
  • Lorentzou, S., C. C. Agrafiotis, and A. G. Konstandopoulos. 2008. Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production. Granular Matter 10 (2):113–22. doi:10.1007/s10035-007-0069-8.
  • Lu, Q., W. Z. Li, and X. F. Zhu. 2009. Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management 50 (5):1376–83. doi:10.1016/j.enconman.2009.01.001.
  • Ma, F., N. Yang, C. Xu, H. Yu, J. Wu, and X. Zhang. 2010. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology 101 (24):9600–04. doi:10.1016/j.biortech.2010.07.084.
  • Mallakpour, S., and Z. Rafiee. 2011. New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Progress in Polymer Science 36 (12):1754–65. doi:10.1016/j.progpolymsci.2011.03.001.
  • Mishra, P., A. Upadhyaya, and G. Sethi. 2006. Modeling of microwave heating of particulate metals. Metallurgical and Materials Transactions B 37 (5):839–45. doi:10.1007/s11663-006-0066-z.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20 (3):848–89. doi:10.1021/ef0502397.
  • Mondal, A., D. Agrawal, and A. Upadhyaya. 2008. Microwave heating of pure copper powder with varying particle size and porosity. Journal of Microwave Power and Electromagnetic Energy 43 (1):5–10. doi:10.1080/08327823.2008.11688599.
  • Mortensen, P. M., J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 407 (1):1–19. doi:10.1016/j.apcata.2011.08.046.
  • Murray, J. S., and P. Politzer. 2011. The electrostatic potential: An overview. Wiley Interdisciplinary Reviews: Computational Molecular Science 1 (2):153–63. doi:10.1002/wcms.19.
  • Nigam, J. N. 2002. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–Fermenting yeast. Journal of Biotechnology 97 (2):107–16. doi:10.1016/S0168-1656(02)00013-5.
  • Oghbaei, M., and O. Mirzaee. 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds 494 (1):175–89. doi:10.1016/j.jallcom.2010.01.068.
  • Önal, E., B. B. Uzun, and A. E. Pütün. 2017. The effect of pyrolysis atmosphere on bio-oil yields and structure. International Journal of Green Energy 14:1–8. doi:10.1080/15435075.2014.952421.
  • Ong, H. C., T. M. I. Mahlia, and H. H. Masjuki. 2011. A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews 15 (1):639–47. doi:10.1016/j.rser.2010.09.043.
  • Pollard, A. S., M. R. Rover, and R. C. Brown. 2012. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. Journal of Analytical and Applied Pyrolysis 93:129–38. doi:10.1016/j.jaap.2011.10.007.
  • Qin, K., W. Lin, P. A. Jensen, and A. D. Jensen. 2012. High-temperature entrained flow gasification of biomass. Fuel 93:589–600. doi:10.1016/j.fuel.2011.10.063.
  • Ranzi, E., A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci, and S. Sommariva. 2008. Chemical kinetics of biomass pyrolysis. Energy & Fuels 22 (6):4292–300. doi:10.1021/ef800551t.
  • Ren, S., H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, and R. Ruan. 2013. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology 135:659–64. doi:10.1016/j.biortech.2012.06.091.
  • Ruth, L. A., and G. M. Varga Jr. 1979. New regenerable sorbents for fluidized bed coal combustion. Environmental Science & Technology 13 (6):715–20. doi:10.1021/es60154a012.
  • Skoulou, V., G. Koufodimos, Z. Samaras, and A. Zabaniotou. 2008. Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H 2-rich producer gas. International Journal of Hydrogen Energy 33 (22):6515–24. doi:10.1016/j.ijhydene.2008.07.074.
  • Srinivas, S. T., A. K. Dalai, and N. N. Bakhshi. 2000. Thermal and catalytic upgrading of a biomass‐derived oil in a dual reaction system. The Canadian Journal of Chemical Engineering 78 (2):343–54. doi:10.1002/cjce.5450780209.
  • Tao, J., C. Dong, Q. Lu, H. Liao, X. Du, Y. Yang, and E. Dahlquist. 2015. Catalytic Cracking of Biomass High-Temperature Pyrolysis Tar Using NiO/AC Catalysts. International Journal of Green Energy 12:773–79. doi:10.1080/15435075.2014.910776.
  • Thangalazhy-Gopakumar, S., S. Adhikari, R. B. Gupta, M. Tu, and S. Taylor. 2011. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments. Bioresource Technology 102 (12):6742–49. doi:10.1016/j.biortech.2011.03.104.
  • Van de Velden, M., J. Baeyens, A. Brems, B. Janssens, and R. Dewil. 2010. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35 (1):232–42. doi:10.1016/j.renene.2009.04.019.
  • Vispute, T. P., H. Zhang, A. Sanna, R. Xiao, and G. W. Huber. 2010. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330 (6008):1222–27. doi:10.1126/science.1194218.
  • Wan, Y., P. Chen, B. Zhang, C. Yang, Y. Liu, X. Lin, and R. Ruan. 2009. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis 86 (1):161–67. doi:10.1016/j.jaap.2009.05.006.
  • Warren, B., M. H. Awida, and A. E. Fathy. 2012. Microwave heating of metals. IET Microwaves, Antennas & Propagation 6 (2):196–205. doi:10.1049/iet-map.2010.0494.
  • Westerhof, R. J., N. J. Kuipers, S. R. Kersten, and W. P. Van Swaaij. 2007. Controlling the water content of biomass fast pyrolysis oil. Industrial & Engineering Chemistry Research 46 (26):9238–47. doi:10.1021/ie070684k.
  • Williams, P. T., and S. Besler. 1996. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy 7 (3):233–50. doi:10.1016/0960-1481(96)00006-7.
  • Yin, C. 2012. Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresource Technology 120:273–84. doi:10.1016/j.biortech.2012.06.016.
  • Zanzi, R., K. Sjöström, and E. Björnbom. 2002. Rapid pyrolysis of agricultural residues at high temperature. Biomass and Bioenergy 23 (5):357–66. doi:10.1016/S0961-9534(02)00061-2.
  • Zhang, S., Y. Yan, T. Li, and Z. Ren. 2005. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology 96 (5):545–50. doi:10.1016/j.biortech.2004.06.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.