812
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator

ORCID Icon
Pages 639-651 | Received 20 Jun 2018, Accepted 26 Mar 2019, Published online: 15 Apr 2019

References

  • Alamir, M. A. 2017. Optimising the performance of a standing wave loudspeaker driven thermoacoustic heat pump. Master thesis, Mansoura University, Egypt. doi:10.13140/RG.2.2.24167.29609.
  • Alamir, M. A. 2019. Experimental Study of the Temperature Variations in a Standing Wave Loudspeaker Driven Thermoacoustic Refrigerator, Manuscript submitted for publication.
  • Alamir, M. A., and A. A. Elamer. 2018. A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator. International Journal of Ambient Energy 1–13. doi:10.1080/01430750.2018.1517673.
  • Alcock, A. C., L. K. Tartibu, and T. C. Jen. 2017. Experimental investigation of ceramic substrates in standing wave thermoacoustic refrigerator. Procedia Manufacturing 7:79–85. doi:10.1016/j.promfg.2016.12.021.
  • Assawamartbunlue, K., and C. Wantha. 2015. Experimental investigation on the optimal operating frequency of a thermoacoustic refrigerator. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 9 (5):784–87.
  • Babaei, H., and K. Siddiqui. 2008. Design and optimization of thermoacoustic devices. Energy Conversion and Management 49 (12):3585–98. doi:10.1016/j.enconman.2008.07.002.
  • Brown, J. S., and P. A. Domanski. 2014. Review of alternative cooling technologies. Applied Thermal Engineering 64 (1):252–62. doi:10.1016/j.applthermaleng.2013.12.014.
  • Ward, W. C.,  Clark, J. P., and G. W. Swift. 2012. Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC) version 6.3 B11 users guide. Los Alamos National 753.
  • Elnegiry, E. A., H. R. Eltahan, and M. A. Alamir. 2016. Optimizing the performance of a standing wave loudspeaker driven thermoacoustic heat pump. International Journal of Scientific & Engineering Research 7 (9):460–65. doi:10.14299/ijser.2016.09.004.
  • Ibrahim, A., H. Omar, and E. Abdel-Rahman. 2011. Constraints and challenges in the development of loudspeaker-driven thermoacoustic refrigerator. Proceedings of the 18th International Congress on Sound and Vibration (ICSV 18), Rio de Janeiro, Brazil, July 10–14.
  • Napolitano, M., R. Romano, and R. Dragonetti. 2017. Open-Cell Foams for Thermoacoustic Applications. Energy 138:147–56. doi:10.1016/j.energy.2017.07.042.
  • Nayak, B. R., G. Pundarika, and B. Arya. 2017. Influence of stack geometry on the performance of thermoacoustic refrigerator. Sādhanā 42 (2): 223–230.
  • Paek, I., J. E. Braun, and L. Mongeau. 2007. Evaluation of standing-wave thermoacoustic cycles for cooling applications. International Journal of Refrigeration 30 (6):1059–71. doi:10.1016/j.ijrefrig.2006.12.014.
  • Pan, Q. W., and R. Z. Wang. 2017. experimental study on operating features of heat and mass recovery processes in adsorption refrigeration. Energy 135:361–69. doi:10.1016/j.energy.2017.06.131.
  • Rahman, A. A., and X. Zhang. 2018. Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through fruit fly optimization algorithm. International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2018.09.031.
  • Rao, R. V., K. C. More, J. Taler, and O. Pawel. 2017. Multi-objective optimization of thermo-acoustic devices using teaching-learning-based optimization algorithm. Science and Technology for the Built Environment 23 (8):1244–52. doi:10.1080/23744731.2017.1296319.
  • Sinclair, I. R. 2000. Audio and Hi-Fi Handbook, Course Technology, Germany.
  • Srikitsuwan, S., S. Kuntanapreeda, and P. Vallikul. 2007. A genetic algorithm for optimization design of thermoacoustic refrigerators. Proceedings of 7th WSEAS International Conference on Simulation, Beijing, China, September 15–17.
  • Tartibu, L. K. 2016. Maximum cooling and maximum efficiency of thermoacoustic refrigerators. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 52 (1):95–102. doi:10.1007/s00231-015-1599-y.
  • Tartibu, L. K. 2018. Numerical optimization of small-scale thermo-acoustic refrigerators considering maximum cooling. Eleventh South African Conference on Computational and Applied Mechanics, Vanderbijlpark, South Africa, 17-19 September 2018.
  • Tassou, S. A., J. S. Lewis, Y. T. Ge, and A. Hadawey. 2010. A review of emerging technologies for food refrigeration applications. Applied Thermal Engineering 30 (4):263–76. doi:10.1016/j.applthermaleng.2009.09.001.
  • Tijani, M. E. H. 2001. Loudspeaker-driven thermo-acoustic refrigeration, PhD thesis, Eindhoven University of Technology, Netherlands.
  • Wantha, C., and K. Assawamartbunlue. 2013. Experimental investigation of the effects of driver housing and resonance tube on the temperature difference across a thermoacoustic stack. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 49 (6):887–96. doi:10.1007/s00231-013-1150-y.
  • Wetzel, M., and C. Herman. 1997. Design optimization of thermoacoustic refrigerators. International Journal of Refrigeration 20 (1):3–21. doi:10.1016/S0140-7007(96)00064-3.
  • Yahya, S. G., X. Mao, and A. J. Jaworski. 2018. experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators. International Journal of Refrigeration 75:52–63. doi:10.1016/j.ijrefrig.2017.01.013.
  • Zolpakar, N. A., and N. Mohd-Ghazali. 2017. Optimization of the stack unit in a thermoacoustic refrigerator. Heat Transfer Engineering 38 (4):431–37. doi:10.1080/01457632.2016.1195138.
  • Zolpakar, N. A., N. Mohd-Ghazali, and R. Ahmad. 2016. Experimental investigations of the performance of a standing wave thermoacoustic refrigerator based on multi-objective genetic algorithm optimized parameters. Applied Thermal Engineering 100:296–303. doi:10.1016/j.applthermaleng.2016.02.028.
  • Zolpakar, N. A., N. Mohd-Ghazali, and M. H. El-Fawal. 2016. Performance analysis of the standing wave thermoacoustic refrigerator: a review. Renewable and Sustainable Energy Reviews 54:626–34. doi:10.1016/j.rser.2015.10.018.
  • Zoontjens, L., and C. Q. Howard. 2005. Development of a low-cost loudspeaker-driven thermoacoustic refrigerator, Proceedings of Acoustics, Busselton, Australia, November 9–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.