200
Views
5
CrossRef citations to date
0
Altmetric
Articles

Multi-objective optimization of a novel crude lipase-catalyzed fatty acid methyl ester (FAME) production using low-order polynomial and Kriging models

& ORCID Icon
Pages 657-665 | Received 02 Apr 2018, Accepted 13 Apr 2019, Published online: 25 Apr 2019

References

  • Ali, C. H., A. S. Qureshi, S. M. Mbadinga, J. F. Liu, S. Z. Yang, and B. Z. Mbu. 2017. Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: central composite design approach. Renewable Energy 109:93–100. doi:10.1016/j.renene.2017.03.018.
  • Amini, Z., Z. İlham, H. C. Ong, H. Mazaheri, and W. H. Chen. 2017. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management 141:339–53. doi:10.1016/j.enconman.2016.09.049.
  • Bajaj, A., P. Lohan, P. N. Jha, and R. Mehrotra. 2010. Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic 62 (1):9–14. doi:10.1016/j.molcatb.2009.09.018.
  • Christopher, L. P., H. Kumar, and V. P. Zambare. 2014. Enzymatic biodiesel: challenges and opportunities. Applied Energy 119:497–520. doi:10.1016/j.apenergy.2014.01.017.
  • Ghaly, A. E., D. Dave, M. S. Brooks, and S. Budge. 2010. Production of biodiesel by enzymatic transesterification: review. American Journal of Biochemistry and Biotechnology 6 (2):54–76. doi:10.3844/ajbbsp.2010.54.76.
  • Gog, A., M. Roman, M. Tosa, C. Paizs, and F. D. Irime. 2012. Biodiesel production using enzymatic transesterification – current state and perspectives. Renewable Energy 39 (1):10–16. doi:10.1016/j.renene.2011.08.007.
  • Guldhe, A., B. Singh, T. Mutanda, K. Permaul, and F. Bux. 2015. Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renewable and Sustainable Energy Reviews 41:1447–64. doi:10.1016/j.rser.2014.09.035.
  • Hama, S., and A. Kondo. 2013. Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresource Technology 135:386–95. doi:10.1016/j.biortech.2012.08.014.
  • Hwang, H. T., F. Qi, C. Yuan, X. Zhao, D. Ramakrishna, D. Lui, and A. Varma. 2014. Lipase-catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnology and Bioengineering 111 (4):639–53. doi:10.1002/bit.25162.
  • Ismail, A. R., S. B. Henawy, M. A. Betiha, S. S. Amr, N. S. El-Gendy, M. S. Azab, and N. M. Sedky. 2017. Optimization of batch novozym435-catalyzed transesterification of waste cooking oil with methanol for biodiesel production in a solvent-free medium. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 39 (9):911–25. doi:10.1080/15567036.2016.1274804.
  • Kleijnen, J. 2005. An overview of the design and analysis of simulation experiments for sensitivity analysis. European Journal of Operational Research 164 (2):287–300. doi:10.1016/j.ejor.2004.02.005.
  • Kleijnen, J. 2017. Regression and kriging metamodels with their experimental designs in simulation: a review. European Journal of Operational Research 256 (1):1–16. doi:10.1016/j.ejor.2016.06.041.
  • Lee, S., D. Posarac, and N. Ellis. 2011. Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chemical Engineering Research and Design 89 (12):2626–42. doi:10.1016/j.cherd.2011.05.011.
  • Leung, D. Y. C., X. Wu, and M. K. H. Leung. 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87 (4):1083–95. doi:10.1016/j.apenergy.2009.10.006.
  • Lophaven, S. N., J. Søndergaard, and H. B. Nielsen. 2002. DACE a matlab kriging toolbox. IMM Informatiocs and Mathematical Modelling 1–28. http://imedea.uib-csic.es/master/cambioglobal/Modulo_V_cod101615/Lab/lab_maps/krigging/DACE-krigingsoft/dace/dace.pdf
  • Mumtaz, M. W., A. Adnan, F. Anwar, H. Mukhtar, M. A. Raza, F. Ahmad, and U. Rashid. 2012. Response surface methodology: an emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies 5 (9):3307–28. doi:10.3390/en5093307.
  • Nielsen, P. M., J. Brask, and L. Fjerbaek. 2008. Enzymatic biodiesel production: technical and economical considerations. European Journal of Lipid Science and Technology 110 (8):692–700. doi:10.1002/ejlt.v110:8.
  • Robles-Medina, A., P. A. González-Moreno, L. Esteban-Cerdán, and E. Molina-Grima. 2009. Biocatalysis: towards ever greener biodiesel production. Biotechnology Advances 27 (4):398–408. doi:10.1016/j.biotechadv.2008.10.008.
  • Rodrigues, R. C., G. Volpato, M. A. Z. Ayub, and K. Wada. 2008. Lipase-catalyzed ethanolysis of soybean oil in a solvent-free system using central composite design and response surface methodology. Journal of Chemical Technology and Biotechnology 83:849–54. doi:10.1002/jctb.1879.
  • Suwanno, S., T. Rakkan, T. Yunu, N. Paichid, P. Kimtun, P. Prasertsan, and K. Sangharak. 2017. The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst. Fuel 195:82–87. doi:10.1016/j.fuel.2017.01.049.
  • Szczesna Antczak, M., A. Kubiak, T. Antczak, and S. Bielecki. 2009. Enzymatic biodiesel synthesis – key factors affecting efficiency of the process. Renewable Energy 34 (5):1185–94. doi:10.1016/j.renene.2008.11.013.
  • Ugur, A., N. Sarac, R. Boran, B. Ayaz, O. Ceylan, and G. Okmen. 2014. New lipase for biodiesel production: partial purification and characterization of LipSB 25-4. ISRN Biochemistry 2014:1–7. doi:10.1155/2014/289749. http://www.hindawi.com/journals/isrn/2014/289749/.
  • Yang, K. S., J. H. Jung, and H. K. Kim. 2009. Catalytic properties of a lipase from photobacterium lipolyticum for biodiesel production containing a high methanol concentration. Journal of Bioscience and Bioengineering 107 (6):599–604. doi:10.1016/j.jbiosc.2009.01.009.
  • Yilmaz, D. E., and N. A. Sayar. 2015. Organic solvent stable lipase from Cryptococcus diffluens d44 isolated from petroleum sludge. Journal of Molecular Catalysis B: Enzymatic 122:72–79. doi:10.1016/j.molcatb.2015.08.021.
  • Yun, H., M. Wang, W. Feng, and T. Tan. 2013. Process simulation and energy optimization of the enzyme-catalyzed biodiesel production. Energy 54:84–96. doi:10.1016/j.energy.2013.01.002.
  • Zheng, M. M., Y. Lu, F. H. Huang, L. Wang, P. M. Guo, Y. Q. Feng, and Q. C. Deng. 2013. Lipase immobilization on hyper-cross-linked polymer-coated silica for biocatalytic synthesis of phytosterol esters with controllable fatty acid composition. Agricultural and Food Chemistry 61:231–37. doi:10.1021/jf3042962.
  • Zheng, M. M., Y. L. Lu, L. Dong, P. M. Guo, Q. C. Deng, W. L. Li, Y. Q. Feng, and F. H. Huang. 2012. Immobilization of Candida rugosa lipiase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Bioresource Technololgy 115:141–46. doi:10.1016/j.biortech.2011.11.128.
  • Zheng, M. M., L. Mao, F. H. Huang, X. Xiang, Q. Deng, and Y. Q. Feng. 2015. A mixed-function-grafted magnetic mesoporous hollow silica microsphere immobilized lipase strategy for ultrafast transesterification in a solvent-free system. RSC Advances 5:43074–80. doi:10.1039/C5RA05611J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.