400
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of solidity and airfoil on the performance of vertical axis wind turbine under fluctuating wind conditions

, , , , &
Pages 1329-1342 | Received 22 Jun 2018, Accepted 15 Sep 2019, Published online: 29 Sep 2019

References

  • Asr, M. T., E. Z. Nezhad, F. Mustapha, and S. Wiriadidjaja. 2016. Study on start-up characteristics of h-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112:528–37. doi:10.1016/j.energy.2016.06.059.
  • Bausas, M. D., and L. A. M. Danao. 2015a. The aerodynamics of a Camber-bladed vertical axis Wind Turbine in unsteady wind. Energy 93:1155–64. doi:10.1016/j.energy.2015.09.120.
  • Bhargav, M. M. S. R. S., V. Ratna Kishore, and V. Laxman. 2016. Influence of fluctuating wind conditions on vertical axis wind turbine using a three dimensional CFD model. Journal of Wind Engineering and Industrial Aerodynamics 158. doi:10.1016/j.jweia.2016.10.001.
  • Chen, J., L. Chen, X. Hongtao, H. Yang, Y. Changwen, and D. Liu. 2016. Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family. Energy 114:318–31. doi:10.1016/j.energy.2016.08.005.
  • Craig, A. E., J. O. Dabiri, and J. R. Koseff. 2017. Low order physical models of vertical axis wind turbines. Journal of Renewable and Sustainable Energy 9 (1):13306. doi:10.1063/1.4976983.
  • Danao, L. A., J. Edwards, O. Eboibi, and R. Howell. 2014. A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine. Applied Energy 116:111–24. doi:10.1016/j.apenergy.2013.11.045.
  • Danao, L. A., O. Eboibi, and R. Howell. 2013. An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine. Applied Energy 107:403–11. doi:10.1016/j.apenergy.2013.02.012.
  • Daróczy, L., G. Janiga, K. Petrasch, M. Webner, and T. Dominique. 2015. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 90:680–90. doi:10.1016/j.energy.2015.07.102.
  • Delafin, P.-L., T. Nishino, L. Wang, and A. Kolios. 2016. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine. Journal of Physics: Conference Series 753:22033. IOP Publishing.
  • Eboibi, O., L. A. M. Danao, and R. J. Howell. 2016. Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers. Renewable Energy 92:474–83. doi:10.1016/j.renene.2016.02.028.
  • Elkhoury, M., T. Kiwata, and E. Aoun. 2015. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics 139:111–23. doi:10.1016/j.jweia.2015.01.004.
  • Emejeamara, F. C., A. S. Tomlin, and J. T. Millward-Hopkins. 2015. Urban wind: Characterisation of useful gust and energy capture. Renewable Energy 81:162–72. doi:10.1016/j.renene.2015.03.028.
  • Ghasemian, M., Z. Najafian Ashrafi, and A. Sedaghat. 2017. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management 149:87–100. doi:10.1016/j.enconman.2017.07.016.
  • Gosselin, R., G. Dumas, and M. Boudreau. 2013. Parametric study of H-Darrieus vertical-axis turbines using URANS simulations. In 21st Annual Conference of the CFD Society of Canada (CFDSC), Sherbrooke, QC, Canada, May, 6–9.
  • Hashem, I., and M. H. Mohamed. 2018. Aerodynamic performance enhancements of H-Rotor Darrieus wind turbine. Energy 142:531–45. doi:10.1016/j.energy.2017.10.036.
  • Hassan, S. M. R., M. Ali, and M. Q. Islam. 2016. The effect of solidity on the performance of H-Rotor Darrieus turbine. AIP Conference Proceedings 1754:40012. AIP Publishing.
  • Ishugah, T. F., Y. Li, R. Z. Wang, and J. K. Kiplagat. 2014. Advances in wind energy resource exploitation in urban environment: A review. Renewable and Sustainable Energy Reviews 37:613–26. doi:10.1016/j.rser.2014.05.053.
  • Islam, M., A. Fartaj, and R. Carriveau. 2011. Design analysis of a smaller-capacity straight-bladed VAWT with an asymmetric airfoil. International Journal of Sustainable Energy 30 (3):179–92. doi:10.1080/1478646X.2010.509496.
  • Ismail, M. F., and K. Vijayaraghavan. 2015. The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80:20–31. doi:10.1016/j.energy.2014.11.034.
  • Kim, D., and M. Gharib. 2013. Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics 115:48–52. doi:10.1016/j.jweia.2013.01.009.
  • Kumbernuss, J., J. Chen, H. X. Yang, and L. Lu. 2012. Investigation into the relationship of the overlap ratio and shift angle of double stage three bladed vertical axis wind turbine (VAWT). Journal of Wind Engineering and Industrial Aerodynamics 107–108:57–75. doi:10.1016/j.jweia.2012.03.021.
  • Lee, M.-H., Y. C. Shiah, and C.-J. Bai. 2016. Experiments and numerical simulations of the rotor-blade performance for a small-scale horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 149:17–29. doi:10.1016/j.jweia.2015.12.002.
  • Lei, H., D. Zhou, Y. Bao, C. Chen, M. Ning, and Z. Han. 2017. Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion. Energy 127:1–17. doi:10.1016/j.energy.2017.03.087.
  • Li, Q., T. Maeda, Y. Kamada, J. Murata, K. Furukawa, and M. Yamamoto. 2015. Effect of number of blades on aerodynamic forces on a straight-Bladed Vertical Axis Wind Turbine. Energy 90:784–95. doi:10.1016/j.energy.2015.07.115.
  • Li, Q., T. Maeda, Y. Kamada, J. Murata, K. Shimizu, T. Ogasawara, A. Nakai, and T. Kasuya. 2016b. Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renewable Energy 96:928–39. doi:10.1016/j.renene.2016.05.054.
  • Li, Q., T. Maeda, Y. Kamada, J. Murata, T. Kawabata, K. Shimizu, T. Ogasawara, A. Nakai, and T. Kasuya. 2016a. Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part II: For predicting flow field and performance). Energy 104:295–307. doi:10.1016/j.energy.2016.03.129.
  • Liang, C., and L. Huaxing. 2018. Aerofoil optimization for improving the power performance of a vertical axis wind turbine using multiple streamtube model and genetic algorithm. Royal Society Open Science 5. doi:10.1098/Rsos.180540.
  • Lohry, M. W., and L. Martinelli. 2016. Unsteady Reynolds-averaged Navier–Stokes simulation of crossflow rotors, scaling, and blockage effects. AIAA Journal. doi:10.2514/1.J055069.
  • Ma, N., H. Lei, Z. Han, D. Zhou, Y. Bao, K. Zhang, L. Zhou, and C. Chen. 2018. Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy 150:236–52. doi:10.1016/j.energy.2018.02.115.
  • Manual, F. 2009. User’s Guide. October. doi:10.1111/j.1600-0447.2011.01711.x.
  • Marini, M., A. Massardo, and A. Satta. 1992. Performance of Vertical Axis Wind Turbines with different shapes. Journal of Wind Engineering and Industrial Aerodynamics 39 (1–3):83–93. doi:10.1016/0167-6105(92)90535-i.
  • Mcintosh, S. C., H. Babinsky, and T. Bertenyi. 2007. Optimizing the Energy Output of Vertical Axis Wind Turbines for fluctuating wind conditions. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. doi:10.2514/6.2007-1368
  • McLaren, K., S. Tullis, and S. Ziada. 2012. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small‐scale Vertical Axis Wind Turbine. Wind Energy 15 (3):349–61. doi:10.1002/we.v15.3.
  • McLaren, K. W. 2011. Unsteady loading of High Solidity Vertical Axis Wind Turbines (Ph.d. thesis), McMaster University.
  • Meana-Fernández, A., I. Solís-Gallego, J. M. F. Oro, K. M. A. Díaz, and S. Velarde-Suárez. 2018. Parametrical evaluation of the aerodynamic performance of Vertical Axis Wind Turbines for the proposal of optimized designs. Energy. doi:10.1016/j.energy.2018.01.062.
  • Mohamed, M. H. 2016. Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (computational fluid dynamics) techniques. Energy 96:531–44. doi:10.1016/j.energy.2015.12.100.
  • Orlandi, A., M. Collu, S. Zanforlin, and A. Shires. 2015. 3D URANS analysis of a vertical axis wind turbine in skewed flows. Journal of Wind Engineering and Industrial Aerodynamics 147:77–84. doi:10.1016/j.jweia.2015.09.010.
  • Peng, H. Y., and H. F. Lam. 2016. Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109:557–68. doi:10.1016/j.energy.2016.04.100.
  • Rezaeiha, A., H. Montazeri, and B. Blocken. 2018. Towards optimal aerodynamic design of Vertical Axis Wind Turbines: Impact of solidity and number of blades. Energy 165:1129–48. doi:10.1016/j.energy.2018.09.192.
  • Samsonov, V., and P. Baklushin. 1992. Comparison of different ways for VAWT aerodynamic control. Journal of Wind Engineering and Industrial Aerodynamics 39 (1–3):427–33. doi:10.1016/0167-6105(92)90566-S.
  • Shi, L., V. A. Riziotis, S. G. Voutsinas, and J. Wang. 2014. A consistent vortex model for the aerodynamic analysis of Vertical Axis Wind Turbines. Journal of Wind Engineering and Industrial Aerodynamics 135:57–69. doi:10.1016/j.jweia.2014.10.002.
  • Subramanian, A., S. Arun Yogesh, H. Sivanandan, A. Giri, V. Madhavan, M. Vivek, and V. Ratna Kishore. 2017. Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy. doi:10.1016/j.energy.2017.05.118.
  • Sudhamshu, A. R., M. C. Pandey, N. Sunil, N. S. Satish, V. Mugundhan, and R. K. Velamati. 2016. Numerical Study of effect of pitch angle on performance characteristics of a HAWT. Engineering Science and Technology, an International Journal 19 (1):632–41. doi:10.1016/j.jestch.2015.09.010.
  • Sumantraa, B., S. Chandramouli, T. P. Premsai, P. Prithviraj, V. Mugundhan, and R. K. Velamati. 2014. Numerical analysis of effect of pitch angle on a small scale Vertical Axis Wind Turbine. International Journal of Renewable Energy Research (IJRER) 4 (4):929–35.
  • Tian, W., Z. Mao, A. Xinyu, B. Zhang, and H. Wen. 2017. Numerical study of rnergy recovery from the wakes of moving vehicles on highways by using a Vertical Axis Wind Turbine. Energy 141:715–28. doi:10.1016/j.energy.2017.07.172.
  • Tjiu, W., T. Marnoto, S. Mat, M. H. Ruslan, and K. Sopian. 2015. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renewable Energy 75:560–71. doi:10.1016/j.renene.2014.10.039.
  • Toja-Silva, F., A. Colmenar-Santos, and M. Castro-Gil. 2013. Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions - opportunities and challenges. Renewable and Sustainable Energy Reviews 24:364–78. doi:10.1016/j.rser.2013.03.052.
  • Troldborg, N., and S. Jn. 2014. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes. Wind Energy 17 (April 2013):657–69. doi:10.1002/we.
  • Tummala, A., R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna. 2016. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews 56:1351–71. doi:10.1016/j.rser.2015.12.027.
  • Wang, Y., S. Shen, L. Gaohui, D. Huang, and Z. Zheng. 2018. Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renewable Energy 126:801–18. doi:10.1016/j.renene.2018.02.095.
  • Wang, Z., and M. Zhuang. 2017. Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy 208:1184–97. doi:10.1016/j.apenergy.2017.09.034.
  • Wekesa, D. W., C. Wang, Y. Wei, J. N. Kamau, and L. A. M. Danao. 2015. A numerical analysis of unsteady inflow wind for site specific Vertical Axis Wind Turbine: A case study for Marsabit and Garissa in Kenya. Renewable Energy 76:648–61. doi:10.1016/j.renene.2014.11.074.
  • Wekesa, D. W., C. Wang, Y. Wei, and L. A. M. Danao. 2014. Influence of operating conditions on unsteady wind performance of Vertical Axis Wind Turbines operating within a fluctuating free-stream: A numerical study. Journal of Wind Engineering and Industrial Aerodynamics 135:76–89. doi:10.1016/j.jweia.2014.10.016.
  • Wong, K. H., W. T. Chong, N. L. Sukiman, S. C. Poh, Y.-C. Shiah, and C.-T. Wang. 2017. Performance enhancements on Vertical Axis Wind Turbines using flow augmentation systems: A review. Renewable and Sustainable Energy Reviews 73:904–21. doi:10.1016/j.rser.2017.01.160.
  • Zanforlin, S., and S. Deluca. 2018. Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines. Energy 148:179–95. doi:10.1016/j.energy.2018.01.132.
  • Zuo, W., X. Wang, and S. Kang. 2016. Numerical simulations on the wake effect of H-type Vertical Axis Wind Turbines. Energy 106:691–700. doi:10.1016/j.energy.2016.02.127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.