264
Views
34
CrossRef citations to date
0
Altmetric
Articles

Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system

ORCID Icon
Pages 1547-1561 | Received 28 Nov 2017, Accepted 21 Sep 2019, Published online: 16 Oct 2019

References

  • Baradar, M., and M. R. Hesamzadeh. 2014. A stochastic SOCP optimal power flow with wind power uncertainty. IEEE PES General Meeting Conference & Exposition, National Harbor, MD, 1–5. doi: 10.1109/PESGM.2014.6939790.
  • Bu, S., F. R. Yu, and P. X. Liu. 2014. Distributed unit commitment scheduling in the future smart grid with intermittent renewable energy resources and stochastic power demands. International Journal of Green Energy 140416104557008. doi:10.1080/15435075.2014.893874.
  • Cao, J., and Z. Yan. 2017. Probabilistic optimal power flow considering dependences of wind speed among wind farms by pair-copula method. International Journal of Electrical Power & Energy Systems 84:296–307. doi:10.1016/j.ijepes.2016.06.008.
  • Chen, S., G. Sun, Z. Wei, S. Chen, and Y. Li. 2016. Multi-time combined gas and electric system optimal power flow incorporating wind power. Energy Procedia 100:111–16. doi:10.1016/j.egypro.2016.10.147.
  • Fard, H. H., and A. Jalilian. 2016. A novel objective function for optimal DG allocation in distribution systems using meta-heuristic algorithms. International Journal of Green Energy 13 (15):1615–25. doi:10.1080/15435075.2016.1212355.
  • Fard, H. H., and A. Jalilian. 2018. Optimal sizing and siting of renewable energy resources in distribution systems considering time varying electrical/heating/cooling loads using PSO algorithm. International Journal of Green Energy 15 (2):113–28. doi:10.1080/15435075.2018.1423981.
  • Frank, S., and S. Rebennack. 2016. An introduction to optimal power flow: Theory, formulation, and examples. IIE Transactions 48 (12):1172–97. doi:10.1080/0740817X.2016.1189626.
  • Han, Z., T. Cheng, Y. Zhou, and P. Zhang. 2015. Multi-objective optimal scheduling for hydro-thermal-wind power system. TENCON - IEEE Region 10 Conference, Macao, 1–5. doi: 10.1109/TENCON.2015.7372768.
  • Helseth, A., A. Gjelsvik, B. Mo, and U. Linnet. 2013. A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power. IET Generation, Transmission & Distribution 7 (12):1426–34. doi:10.1049/iet-gtd.2012.0639.
  • Hetzer, J., D. C. Yu, and K. Bhattarai. 2008. An economic dispatch model incorporating wind power. IEEE Transactions on Energy Conversion 23 (2):603–11. doi:10.1109/TEC.2007.914171.
  • Ju, L., H. Li, J. Zhao, K. Chen, Q. Tan, and Z. Tan. 2016. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response. Energy Conversion and Management 128:160–77. doi:10.1016/j.enconman.2016.09.072.
  • Kathiravan, R., and R. P. K. Devi. 2017. Optimal power flow model incorporating wind, solar, and bundled solar-thermal power in the restructured Indian power system. International Journal of Green Energy 14 (11):934–50. doi:10.1080/15435075.2017.1339045.
  • Kothari, D. P., and J. S. Dhillon. 2015. Power system optimization. 2nd ed. Delhi, India: PHI learning Private limited.
  • Krishnand, K. N., and D. Ghose. 2009. Glowworm swarm optimisation for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence 3:87–124. doi:10.1007/s11721-008-0021-5.
  • Li, Y. Z., K. C. Li, P. Wang, Y. Liu, X. N. Lin, H. B. Gooi, G. F. Li, D. L. Cai, and Y. Luo. 2017. Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach. Energy 126:810–20. doi:10.1016/j.energy.2017.02.142.
  • Ma, R., and J. Qin. 2017. Multi-objective optimal power flow of multiple-energy system considering wind power penetration. IEEE International Conference on Energy Internet, Beijing, China, 13–17. doi: 10.1109/ICEI.2017.10.
  • Maity, D., A. Chowdhury, S. S. Reddy, B. K. Panigrahi, A. R. Abhyankar, and M. K. Mallick. 2013. Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique. IEEE Symposium on Swarm Intelligence, Singapore, 284–90. doi: 10.1109/SIS.2013.6615191.
  • Mehri, R., and M. Kalantar. 2015. Multi-objective scheduling of electric vehicles considering wind and demand uncertainties. Smart Grid Conference, Tehran, 122–29. doi: 10.1109/SGC.2015.7857421.
  • Mishra, S., Y. Mishra, and S. Vignesh. 2011. Security constrained economic dispatch considering wind energy conversion systems. IEEE Power and Energy Society General Meeting, San Diego, CA, 1–8. doi: 10.1109/PES.2011.6039544.
  • Mohamed, M. A., A. M. Eltamaly, A. I. Alolah, and A. Y. Hatata. 2019. A novel framework-based cuckoo search algorithm for sizing and optimization of grid-independent hybrid renewable energy systems. International Journal of Green Energy 16 (1):86–100. doi:10.1080/15435075.2018.1533837.
  • Mohseni-Bonab, S. M., A. Rabiee, B. Mohammadi-Ivatloo, S. Jalilzadeh, and S. Nojavan. 2016. A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem. International Journal of Electrical Power & Energy Systems 75:194–204. doi:10.1016/j.ijepes.2015.08.009.
  • Momoh, J. A. 2014. Outreach program in electrical engineering: Pre-College for Engineering Systems (PCES). IEEE Transactions on Power Systems 29 (4):1880–87. doi:10.1109/TPWRS.2014.2320279.
  • Moradi, M. H., and M. Abedini. 2012. A combination of genetic algorithm and particle swarm optimization for optimal distributed generation location and sizing in distribution systems with fuzzy optimal theory. International Journal of Green Energy 9 (7):641–60. doi:10.1080/15435075.2011.625590.
  • Nafeh, A. E. A. 2011. Optimal economical sizing of A PV-wind hybrid energy system using genetic algorithm. International Journal of Green Energy 8 (1):25–43. doi:10.1080/15435075.2010.529407.
  • Niknam, T., H. D. Mojarrad, and H. Z. Meymand. 2011. A novel hybrid particle swarm optimization for economic dispatch with valvepoint loading effects. Energy Conversion Management 52 (4):1800–09. doi:10.1016/j.enconman.2010.11.004.
  • Panda, A., and M. Tripathy. 2016. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm. Journal of Electrical Systems and Information Technology 3 (2):151–60. doi:10.1016/j.jesit.2016.01.004.
  • Panda, A., M. Tripathy, A. K. Barisal, and T. Prakash. 2017. A modified bacteria foraging based optimal power flow framework for hydro-thermal-wind generation system in the presence of STATCOM. Energy 124:720–40. doi:10.1016/j.energy.2017.02.090.
  • Qu, B. Y., J. J. Liang, Y. S. Zhu, Z. Y. Wang, and P. N. Suganthan. 2016. Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm. Information Sciences 351:48–66. doi:10.1016/j.ins.2016.01.081.
  • Reddy, S. S., P. R. Bijwe, and A. R. Abhyankar. 2015. Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal 9 (1):152–64. doi:10.1109/JSYST.2013.2272236.
  • Reddy, S. S., and J. A. Momoh. 2016. Minimum emissions optimal power flow in wind-thermal power system using opposition based bacterial dynamics algorithm. IEEE Power and Energy Society General Meeting, Boston, MA, 1–5. doi: 10.1109/PESGM.2016.7741635.
  • Sailaja, K. M., and S. Maheswarapu. 2010. Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. International Journal of Electrical Power & Energy Systems 32 (6):736–42. doi:10.1016/j.ijepes.2010.01.010.
  • Surender Reddy, S., A. R. Abhyankar, and P. R. Bijwe. 2011. Reactive power price clearing using multi-objective optimization. Energy 36 (5):3579–89. doi:10.1016/j.energy.2011.03.070.
  • Surender Reddy, S., P. R. Bijwe, and A. R. Abhyankar. 2014. Faster evolutionary algorithm based optimal power flow using incremental variables. International Journal of Electrical Power & Energy Systems 54:198–210. doi:10.1016/j.ijepes.2013.07.019.
  • Surender Reddy, S., and C. S. Rathnam. 2016. Optimal power flow using glowworm swarm optimization. International Journal of Electrical Power & Energy Systems 80:128–39. doi:10.1016/j.ijepes.2016.01.036.
  • Teeparthi, K., and D. M. V. Kumar. 2017. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators. Engineering Science and Technology, an International Journal 20 (2):411–26. doi:10.1016/j.jestch.2017.03.002.
  • Tyagi, A., A. Verma, and A. Saxena. 2015. Optimal economic dispatch considering wind energy conversion systems using Gray coded genetic algorithm. IEEE India Conference, New Delhi, 1–5. doi: 10.1109/INDICON.2015.7443234.
  • Wang, Z., Y. Shi, X. Wang, Q. Zhang, and S. Qu. 2016. Economic dispatch of power system containing wind power and photovoltaic considering carbon trading and spare capacity variation. International Journal of Green Energy 13 (12):1267–80. doi:10.1080/15435075.2016.1188105.
  • Zheng, X. K., K. Li, R. Wang, and T. Zhang. 2017. Operation management of a hybrid renewable energy systems base on multi-objective optimal under uncertainties. IEEE International Conference on Energy Internet, Beijing, China, 59–64. doi: 10.1109/ICEI.2017.18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.