49,117
Views
119
CrossRef citations to date
0
Altmetric
Review Articles

An overview of development and challenges in hydrogen powered vehicles

&
Pages 13-37 | Received 30 Mar 2019, Accepted 24 Oct 2019, Published online: 18 Nov 2019

References

  • 2018 Honda Clarity Fuel Cell – Hydrogen Powered Car | Honda [WWW Document]. n.d. Accessed December 3, 2018. https://automobiles.honda.com/clarity-fuel-cell.
  • 2018 Toyota Mirai Hydrogen Fuel Cell Vehicle | The Future of Everyday [WWW Document]. n.d. Accessed December 3, 2018. https://ssl.toyota.com/mirai/fcv.html
  • Aasadnia, M., and M. Mehrpooya. 2018. Large-scale liquid hydrogen production methods and approaches: A review. Applied Energy 212:57–83. doi:10.1016/J.APENERGY.2017.12.033.
  • Acar, C., and I. Dincer. 2018. The potential role of hydrogen as a sustainable transportation fuel to combat global warming. International Journal of Hydrogen Energy. doi:10.1016/J.IJHYDENE.2018.10.149.
  • Aceves, S. M., G. D. Berry, A. H. Weisberg, F. Espinosa-Loza, and S. A. Perfect, 2006. Advanced concepts for vehicular containment of compressed and cryogenic hydrogen. 16th World Hydrog. Energy ConfWHEC, Lyon, France. 3, 94550. doi:10.1103/PhysRevLett.98.010504
  • Ahluwalia, R. K., T. Q. Hua, and J. K. Peng. 2012. On-board and Off-board performance of hydrogen storage options for light-duty vehicles. International Journal of Hydrogen Energy 37:2891–910. doi:10.1016/J.IJHYDENE.2011.05.040.
  • Alavi, F., E. Park Lee, N. van de Wouw, B. De Schutter, and Z. Lukszo. 2017. Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks. Applied Energy 192:296–304. doi:10.1016/J.APENERGY.2016.10.084.
  • Alazemi, J., and J. Andrews. 2015. Automotive hydrogen fuelling stations: An international review. Renewable and Sustainable Energy Reviews 48:483–99. doi:10.1016/J.RSER.2015.03.085.
  • Alesker, M., M. Page, M. Shviro, Y. Paska, G. Gershinsky, D. R. Dekel, and D. Zitoun. 2016. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. Journal of Power Sources 304:332–39. doi:10.1016/J.JPOWSOUR.2015.11.026.
  • Álvarez Fernández, R., S. Corbera Caraballo, F. Beltrán Cilleruelo, and J. A. Lozano. 2018. Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renewable and Sustainable Energy Reviews 81:655–68. doi:10.1016/J.RSER.2017.08.047.
  • Ambrose, A. F., A. Q. Al-Amin, R. Rasiah, R. Saidur, and N. Amin. 2017. Prospects for introducing hydrogen fuel cell vehicles in Malaysia. International Journal of Hydrogen Energy 42:9125–34. doi:10.1016/J.IJHYDENE.2016.05.122.
  • Amrouche, F., P. A. Erickson, J. W. Park, and S. Varnhagen. 2016. Extending the lean operation limit of a gasoline Wankel rotary engine using hydrogen enrichment. International Journal of Hydrogen Energy 41:14261–71. doi:10.1016/J.IJHYDENE.2016.06.250.
  • Andrews, J., and B. Shabani. 2014. The role of hydrogen in a global sustainable energy strategy. Wiley Interdisciplinary Reviews: Energy and Environment 3:474–89. doi:10.1002/wene.103.
  • Arat, H. T. 2018. Simulation of diesel hybrid electric vehicle containing hydrogen enriched CI engine. International Journal Hydrogen Energy. doi:10.1016/J.IJHYDENE.2018.10.004.
  • Atkinson, K., S. Roth, M. Hirscher, and W. Grünwald. 2001. Carbon nanostructures: An efficient hydrogen storage medium for fuel cells. Fuel Cells Bulletin 4:9–12. doi:10.1016/S1464-2859(01)80733-1.
  • Ayad, M. Y., M. Becherif, and A. Henni. 2011. Vehicle hybridization with fuel cell, supercapacitors and batteries by sliding mode control. Renewable Energy 36:2627–34. doi:10.1016/J.RENENE.2010.06.012.
  • Bai-gang, S., T. Hua-yu, and L. Fu-shui. 2014. The distinctive characteristics of combustion duration in hydrogen internal combustion engine. International Journal of Hydrogen Energy 39:14472–78. doi:10.1016/J.IJHYDENE.2014.04.013.
  • Balat, M. 2008. Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy 33:4013–29. doi:10.1016/J.IJHYDENE.2008.05.047.
  • Balat, M., and M. Balat. 2009. Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy 34:3589–603. doi:10.1016/j.ijhydene.2009.02.067.
  • Ball, M., and M. Weeda. 2015. The hydrogen economy – Vision or reality? International Journal of Hydrogen Energy 40:7903–19. doi:10.1016/J.IJHYDENE.2015.04.032.
  • Ball, M., and M. Wietschel. 2009. The future of hydrogen – Opportunities and challenges☆. International Journal of Hydrogen Energy 34:615–27. doi:10.1016/j.ijhydene.2008.11.014.
  • Barbir, F. 2009. Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34:308–12. doi:10.1016/J.ENERGY.2008.07.007.
  • Barbir, F. 2013. PEM fuel cells : Theory and practice. San Diego, CA: Academic Press.
  • Bauman, J., and M. Kazerani. 2008. A comparative study of fuel-cell–battery, fuel-cell–Ultracapacitor, and fuel-cell–battery–Ultracapacitor vehicles. IEEE Transactions on Vehicular Technology 57:760–69. doi:10.1109/TVT.2007.906379.
  • Biniwale, R. B., S. Rayalu, S. Devotta, and M. Ichikawa. 2008. Chemical hydrides: A solution to high capacity hydrogen storage and supply. International Journal of Hydrogen Energy 33:360–65. doi:10.1016/J.IJHYDENE.2007.07.028.
  • Bögel, P., C. Oltra, R. Sala, M. Lores, P. Upham, E. Dütschke, U. Schneider, and P. Wiemann. 2018. The role of attitudes in technology acceptance management: Reflections on the case of hydrogen fuel cells in Europe. Journal of Cleaner Production 188:125–35. doi:10.1016/J.JCLEPRO.2018.03.266.
  • Boretti, A. 2011. Advantages of the direct injection of both diesel and hydrogen in dual fuel H2ICE. International Journal of Hydrogen Energy 36:9312–17. doi:10.1016/j.ijhydene.2011.05.037.
  • Bradley, D., M. Lawes, K. Liu, S. Verhelst, and R. Woolley. 2007. Laminar burning velocities of lean hydrogen–Air mixtures at pressures up to 1.0 MPa. Combustion and Flame 149:162–72. doi:10.1016/J.COMBUSTFLAME.2006.12.002.
  • Brey, J. J., A. F. Carazo, and R. Brey. 2018. Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain. Renewable and Sustainable Energy Reviews 82:2893–99. doi:10.1016/J.RSER.2017.10.042.
  • Burhan, M., S. J. Oh, K. J. E. Chua, and K. C. Ng. 2017. Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production. Applied Energy 194:255–66. doi:10.1016/J.APENERGY.2016.11.062.
  • Cadwallader, L. C., and J. S. Herring. 1999. Safety Issues with Hydrogen as a Vehicle Fuel. Contract. US: Department of Energy.
  • Campíñez-Romero, S., A. Colmenar-Santos, C. Pérez-Molina, and F. Mur-Pérez. 2018. A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out. Energy 148:1018–31. doi:10.1016/J.ENERGY.2018.02.009.
  • Chang, W.-C., A. Y.-J. Huang, D.-R. Huang, and T.-Y. Chen. 2016. An economic evaluation on the purification and storage of waste hydrogen for the use of fuel cell scooters. International Journal of Green Energy 13:1608–14. doi:10.1080/15435075.2016.1212199.
  • Chang, X., T. Ma, and R. Wu. 2018. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives. International Journal Hydrogen Energy. doi:10.1016/J.IJHYDENE.2018.09.099.
  • Chapman, L. 2007. Transport and climate change: A review. Journal of Transport Geography 15:354–67. doi:10.1016/J.JTRANGEO.2006.11.008.
  • Charles, W. 2006. Hydrogen markets: Implications for hydrogen production technologies. USA: Oak Ridge National Laboratory.
  • Chen, S., A. Kumar, W. C. Wong, M.-S. Chiu, and X. Wang. 2019. Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies. Applied Energy 233–234:321–37. doi:10.1016/J.APENERGY.2018.10.003.
  • Dalai, S., S. Vijayalakshmi, P. Sharma, and K. Y. Choo. 2014. Magnesium and iron loaded hollow glass microspheres (HGMs) for hydrogen storage. International Journal of Hydrogen Energy 39:16451–58. doi:10.1016/J.IJHYDENE.2014.03.062.
  • Das, L. M. 2016. Hydrogen-fueled internal combustion engines. Compend. Hydrogen Energy 177–217. doi:10.1016/B978-1-78242-363-8.00007-4.
  • Das, V., S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, and P. Siano. 2017. Recent advances and challenges of fuel cell based power system architectures and control – A review. Renewable and Sustainable Energy Reviews 73:10–18. doi:10.1016/J.RSER.2017.01.148.
  • Davis, S. C., S. E. Williams, and R. G. Boundy. n.d. Transportation energy data book: Edition 36.2 - Full Document [WWW Document]. Oak Ridge Natl. Lab. Accessed December 1, 2018. https://cta.ornl.gov/data/tedbfiles/Edition36_Full_Doc.pdf.
  • de Oliveira, A., E. C. Moreira Dos Santos, G. C. Botelho, O. S. Valente, and J. R. Sodré. 2013. Hydrogen electronic injection system for a diesel power generator. International Journal of Hydrogen Energy 38:7986–93. doi:10.1016/J.IJHYDENE.2013.04.118.
  • Deng, H., D. Wang, X. Xie, Y. Zhou, Y. Yin, Q. Du, and K. Jiao. 2016. Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renewable Energy 91:166–77. doi:10.1016/J.RENENE.2016.01.054.
  • Dhyani, V., and K. A. Subramanian. 2018. Experimental investigation on effects of knocking on backfire and its control in a hydrogen fueled spark ignition engine. International Journal of Hydrogen Energy 43:7169–78. doi:10.1016/J.IJHYDENE.2018.02.125.
  • Dicks, A. L., and D. A. J. Rand. 2018. Fuel cell systems explained. Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118706992.
  • Dimitriou, P., and T. Tsujimura. 2017. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy 42:24470–86. doi:10.1016/J.IJHYDENE.2017.07.232.
  • Ditaranto, M., H. Li, and T. Løvås. 2015. Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of combustion and emissions performance. International Journal of Greenhouse Gas Control 37:377–83. doi:10.1016/J.IJGGC.2015.04.004.
  • Dos Santos, K. G., C. T. Eckert, E. De Rossi, R. A. Bariccatti, E. P. Frigo, C. A. Lindino, and H. J. Alves. 2017. Hydrogen production in the electrolysis of water in Brazil, a review. Renewable and Sustainable Energy Reviews 68:563–71. doi:10.1016/J.RSER.2016.09.128.
  • Dougherty, W., S. Kartha, C. Rajan, M. Lazarus, A. Bailie, B. Runkle, and A. Fencl. 2009. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA. Energy Policy 37:56–67. doi:10.1016/J.ENPOL.2008.06.039.
  • Du, Y., X. Yu, J. Wang, H. Wu, W. Dong, and J. Gu. 2016. Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection. International Journal of Hydrogen Energy 41:3240–48. doi:10.1016/J.IJHYDENE.2015.12.025.
  • Du, Y., X. Yu, L. Liu, R. Li, X. Zuo, and Y. Sun. 2017. Effect of addition of hydrogen and exhaust gas recirculation on characteristics of hydrogen gasoline engine. International Journal of Hydrogen Energy 42:8288–98. doi:10.1016/J.IJHYDENE.2017.02.197.
  • Duan, J., F. Liu, and B. Sun. 2014. Backfire control and power enhancement of a hydrogen internal combustion engine. International Journal of Hydrogen Energy 39:4581–89. doi:10.1016/J.IJHYDENE.2013.12.175.
  • Edwards, P. P., V. L. Kuznetsov, W. I. F. David, and N. P. Brandon. 2008. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 36:4356–62. doi:10.1016/J.ENPOL.2008.09.036.
  • Ehsani, M., Y. Gao, S. Longo, and K. Ebrahimi. 2018. Modern electric, hybrid electric, and fuel cell vehicles, Third ed. New York, NY: CRC Press. doi:10.1201/9780429504884.
  • EL-Kassaby, M. M., Y. A. Eldrainy, M. E. Khidr, and K. I. Khidr. 2016. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions. Alexandria Engineering Journal 55:243–51. doi:10.1016/J.AEJ.2015.10.016.
  • Elnashaie, S., Z. Chen, and P. Prasad. 2007. Efficient Production and Economics of Clean-Fuel Hydrogen∗. International Journal of Green Energy 4:249–82. doi:10.1080/15435070701193100.
  • Emadi, A., K. Rajashekara, S. S. Williamson, and S. M. Lukic. 2005. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Transactions on Vehicular Technology 54:763–70. doi:10.1109/TVT.2005.847445.
  • EPA (U.S. Environmental Protection Agency). n.d. Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990–2014 [WWW Document]. Accessed December 1, 2018. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
  • Eriksson, E. L. V., and E. M. Gray. 2017. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review. Applied Energy 202:348–64. doi:10.1016/J.APENERGY.2017.03.132.
  • Ezzat, M., and I. Dincer. 2018. Development and assessment of a new hybrid vehicle with ammonia and hydrogen. Applied Energy 219:226–39. doi:10.1016/J.APENERGY.2018.03.012.
  • Faizal, M., and R. Saidur. 2017. Comparative thermodynamics analysis of gasoline and hydrogen fuelled internal combustion engines. International Journal of Advanced Science Research and Management 2 (3).
  • Fakioğlu, E., Y. Yürüm, and T. Nejat Veziroğlu. 2004. A review of hydrogen storage systems based on boron and its compounds. International Journal of Hydrogen Energy 29:1371–76. doi:10.1016/J.IJHYDENE.2003.12.010.
  • Fangzhu, Z., and P. Cooke. 2009. The green vehicle trend: Electric, plug-in or hybrid or hydrogen fuel cell? [WWW document]. http://www.dime-eu.org/working-papers/sal3-green.
  • Fayaz, H., R. Saidur, N. Razali, F. S. Anuar, A. R. Saleman, and M. R. Islam. 2012. An overview of hydrogen as a vehicle fuel. International Journal of Hydrogen Energy 16:5511–28. doi:10.1016/J.RSER.2012.06.012.
  • Fennell, D., J. Herreros, and A. Tsolakis. 2014. Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming. International Journal of Hydrogen Energy 39:5153–62. doi:10.1016/J.IJHYDENE.2014.01.065.
  • Ferguson, C. R., and A. Kirkpatrick. n.d. Internal combustion engines : Applied thermosciences. UK: Wiley.
  • Fieseler, H., and L. Allidiers, 2006. Liquid hydrogen technologies for mobile use. 16th World Hydrog. Energy Conf, Lyon, France, 1–9.
  • Forsberg, C. W. 2005. Hydrogen markets : Implications for hydrogen production technologies. International Journal Hydrogen 1–13. https://www.edenguard.fr/Docs%20NRJ%20Et%20Cie/Meyer%20et%20Co/122902.pdf
  • Frenette, G., and D. Forthoffer. 2009. Economic & commercial viability of hydrogen fuel cell vehicles from an automotive manufacturer perspective. International Journal of Hydrogen Energy 34:3578–88. doi:10.1016/j.ijhydene.2009.02.072.
  • Ganesan, V. 2012. Internal combustion engines. New Delhi, India: McGraw Hill Education (India) Pvt Ltd.
  • Gang, B. G., and S. Kwon. 2016. The proton exchange membrane fuel cell systems using methanolysis of sodium borohydride as a hydrogen source with cobalt catalysts. International Journal of Green Energy 13:1224–31. doi:10.1080/15435075.2016.1183494.
  • Gomes Antunes, J. M., R. Mikalsen, and A. P. Roskilly. 2009. An experimental study of a direct injection compression ignition hydrogen engine. International Journal of Hydrogen Energy 34:6516–22. doi:10.1016/J.IJHYDENE.2009.05.142.
  • Gray, E. M., C. J. Webb, J. Andrews, B. Shabani, P. J. Tsai, and S. L. I. Chan. 2011. Hydrogen storage for off-grid power supply. International Journal of Hydrogen Energy 36:654–63. doi:10.1016/J.IJHYDENE.2010.09.051.
  • Green, M. A., Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie. 2019. Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications 27:3–12. doi:10.1002/pip.3102.
  • Grüger, F., L. Dylewski, M. Robinius, and D. Stolten. 2018. Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior. Applied Energy 228:1540–49. doi:10.1016/J.APENERGY.2018.07.014.
  • Gurz, M., E. Baltacioglu, Y. Hames, and K. Kaya. 2017. The meeting of hydrogen and automotive: A review. International Journal of Hydrogen Energy 42:23334–46. doi:10.1016/J.IJHYDENE.2017.02.124.
  • Gutarevych, Y., Y. Shuba, J. Matijošius, S. Karev, E. Sokolovskij, and A. Rimkus. 2018. Intensification of the combustion process in a gasoline engine by adding a hydrogen-containing gas. International Journal of Hydrogen Energy 43:16334–43. doi:10.1016/J.IJHYDENE.2018.06.124.
  • Hames, Y., K. Kaya, E. Baltacioglu, and A. Turksoy. 2018. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. International Journal of Hydrogen Energy 43:10810–21. doi:10.1016/J.IJHYDENE.2017.12.150.
  • Hardman, S., and G. Tal. 2018. Who are the early adopters of fuel cell vehicles? Int. International Journal of Hydrogen Energy 43:17857–66. doi:10.1016/J.IJHYDENE.2018.08.006.
  • Harrop, P., and R. Das, n.d. Hybrid and pure electric cars 2009–2019 [WWW document]. http://www.idtechex.com/research/reports/hybrid_and_pure_electric_cars_2009_2019_000227.asp.
  • Hawkins, A. S., and N. Hughes. 2006. Technological characterisation of hydrogen storage and distribution technologies. Social Science 1–28. https://s3.amazonaws.com/academia.edu.documents/5465208/h2storagedistributiontechnologycharacterisation.pdf?response-content-disposition=inline%3B%20filename%3DTechnological_characterisation_of_hydrog.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191105T210751Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=5120930bf6e3293b6fb6a0f45e10dfd9f1fc6492c939740c1889aa701f17958b
  • Herzog, A., and M. Tatsutani. 2005. A Hydrogen future? An economic and environmental assessment of hydrogen production pathways. Natural Resources Defense Council Issue Paper 23. https://www.nrdc.org/sites/default/files/hydrogen.pdf
  • Hirscher, M., M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G. S. Duesberg, Y.-M. Choi, P. Downes, M. Hulman, S. Roth, et al. 2001. Hydrogen storage in sonicated carbon materials. Applied Physics A Materials Science & Processing 72:129–32. doi:10.1007/s003390100816.
  • Holladay, J. D., J. Hu, D. L. King, and Y. Wang. 2009. An overview of hydrogen production technologies. Catalysis Today 139:244–60. doi:10.1016/J.CATTOD.2008.08.039.
  • Hosseini, S. E. 2019. Development of solar energy towards solar city Utopia. Energy sources, Part A recover. Utilization and Environmental Effects 1–14. doi:10.1080/15567036.2019.1576803.
  • Hosseini, S. E., A. M. Andwari, M. A. Wahid, and G. Bagheri. 2013. A review on green energy potentials in Iran. Renewable and Sustainable Energy Reviews 27:533–45. doi:10.1016/j.rser.2013.07.015.
  • Hosseini, S. E., M. Abdul Wahid, M. Jamil, A. A. M. Azli, and F. M. Mohamad. 2015a. A review on biomass-based hydrogen production for renewable energy supply. International Journal of Energy Research 39:1597–615. doi:10.1002/er.
  • Hosseini, S. E., and M. A. Wahid. 2012. Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews 16:5732–40. doi:10.1016/j.rser.2012.05.025.
  • Hosseini, S. E., and M. A. Wahid. 2014. Development of biogas combustion in combined heat and power generation. Renewable and Sustainable Energy Reviews 40:868–75. doi:10.1016/j.rser.2014.07.204.
  • Hosseini, S. E., and M. A. Wahid. 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 57. doi:10.1016/j.rser.2015.12.112.
  • Hosseini, S. E., M. A. Wahid, and A. Ganjehkaviri. 2015b. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia. Energy Conversion and Management 94:415–29. doi:10.1016/j.enconman.2015.02.012.
  • Hovland, V., A. Pesaran, R. M. Mohring, I. A. Eason, G. M. Smith, D. Tran, R. Schaller, and T. Smith. 2003. Water and heat balance in a fuel cell vehicle with a sodium borohydride hydrogen fuel processor. SAE Transactions. doi:10.4271/2003-01-2271.
  • Hwang, J. J. 2013. Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renewable and Sustainable Energy Reviews 19:220–29. doi:10.1016/J.RSER.2012.11.033.
  • 2018. Hype hydrogen fuel cell taxi fleet in Paris reaches 100 vehicles. Fuel Cells Bull 2 2018 (8):2. doi: 10.1016/S1464-2859(18)30271-2. https://www.sciencedirect.com/science/article/pii/S1464285918302712
  • Jorgensen, S. W. 2011. Hydrogen storage tanks for vehicles: Recent progress and current status. Current Opinion in Solid State and Materials Science 15:39–43. doi:10.1016/J.COSSMS.2010.09.004.
  • Ju, F. C. H., G. Agreement, T. Jungmann, C. Harms, and S. Rosini. 2015. Development of PEM fuel cell stack reference test procedures for industry. http://stacktest.zsw-bw.de
  • Jurczyk, M., L. Smardz, I. Okonska, E. Jankowska, M. Nowak, and K. Smardz. 2008. Nanoscale Mg-based materials for hydrogen storage. International Journal of Hydrogen Energy 33:374–80. doi:10.1016/J.IJHYDENE.2007.07.022.
  • Juste, G. L., and E. M. Benavides. 2008. Feasibility analysis of hydrogen as additional fuel in aircraft propulsion. International Journal of Green Energy 5:69–86. doi:10.1080/15435070701839421.
  • Kamil, M., and M. M. Rahman. 2015. Performance prediction of spark-ignition engine running on gasoline-hydrogen and methane-hydrogen blends. Applied Energy 158:556–67. doi:10.1016/J.APENERGY.2015.08.041.
  • Kapdan, I. K., and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 38:569–82. doi:10.1016/j.enzmictec.2005.09.015.
  • Kianfard, H., S. Khalilarya, and S. Jafarmadar. 2018. Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy Conversion and Management 177:339–49. doi:10.1016/J.ENCONMAN.2018.09.057.
  • Kim, J., K. M. Chun, S. Song, H.-K. Baek, and S. W. Lee. 2017. The effects of hydrogen on the combustion, performance and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation. International Journal of Hydrogen Energy 42:25074–87. doi:10.1016/J.IJHYDENE.2017.08.097.
  • Köhler, J., M. Wietschel, L. Whitmarsh, D. Keles, and W. Schade. 2010. Infrastructure investment for a transition to hydrogen automobiles. Technological Forecasting and Social Change 77:1237–48. doi:10.1016/J.TECHFORE.2010.03.010.
  • Kraytsberg, A., and Y. Ein-Eli. 2014. Review of advanced materials for proton exchange membrane fuel cells. Energy and Fuels 28:7303–30. doi:10.1021/ef501977k.
  • Lasn, K., and A. T. Echtermeyer. 2014. Safety approach for composite pressure vessels for road transport of hydrogen. Part 1: Acceptable probability of failure and hydrogen mass. International Journal of Hydrogen Energy 39:14132–41. doi:10.1016/J.IJHYDENE.2014.06.116.
  • Lee, D.-Y., A. Elgowainy, A. Kotz, R. Vijayagopal, and J. Marcinkoski. 2018b. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. Journal of Power Sources 393:217–29. doi:10.1016/J.JPOWSOUR.2018.05.012.
  • Lee, D.-Y., A. Elgowainy, and Q. Dai. 2018a. Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy 217:467–79. doi:10.1016/J.APENERGY.2018.02.132.
  • Lee, J., K. Lee, J. Lee, and B. Anh. 2014. High power performance with zero NOx emission in a hydrogen-fueled spark ignition engine by valve timing and lean boosting. Fuel 128:381–89. doi:10.1016/J.FUEL.2014.03.010.
  • Lee, J. H., and G. W. Skala. 2002. Cooling system for a fuel cell stack. U.S. Patent No. 6,866,955. 15 Mar. 2005.
  • Lemus, R. G., and J. M. Martínez Duart. 2010. Updated hydrogen production costs and parities for conventional and renewable technologies. International Journal of Hydrogen Energy 35:3929–36. doi:10.1016/J.IJHYDENE.2010.02.034.
  • Lindorfer, J., G. Reiter, R. Tichler, and H. Steinmüller. 2019. Hydrogen fuel, fuel cells, and methane. Management Global Warming 419–53. doi:10.1016/B978-0-12-814104-5.00014-4.
  • Lipman, T. E., M. Elke, and J. Lidicker. 2018. Hydrogen fuel cell electric vehicle performance and user-response assessment: Results of an extended driver study. International Journal of Hydrogen Energy 43:12442–54. doi:10.1016/J.IJHYDENE.2018.04.172.
  • Luo, Q., and B. Sun. 2016. Inducing factors and frequency of combustion knock in hydrogen internal combustion engines. International Journal of Hydrogen Energy 41:16296–305. doi:10.1016/J.IJHYDENE.2016.05.257.
  • Ma, F., Y. Wang, S. Ding, and L. Jiang. 2009. Twenty percent hydrogen-enriched natural gas transient performance research. International Journal of Hydrogen Energy 34:6523–31. doi:10.1016/J.IJHYDENE.2009.05.135.
  • Maus, S., J. Hapke, C. N. Ranong, E. Wüchner, G. Friedlmeier, and D. Wenger. 2008. Filling procedure for vehicles with compressed hydrogen tanks. International Journal of Hydrogen Energy 33:4612–21. doi:10.1016/J.IJHYDENE.2008.06.052.
  • Midilli, A., M. Ay, I. Dincer, and M. A. Rosen. 2005. On hydrogen and hydrogen energy strategies: I: Current status and needs. Renewable and Sustainable Energy Reviews 9:255–71. doi:10.1016/J.RSER.2004.05.003.
  • Moreno, F., M. Muñoz, J. Arroyo, O. Magén, C. Monné, and I. Suelves. 2012. Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. International Journal of Hydrogen Energy 37:11495–503. doi:10.1016/J.IJHYDENE.2012.04.012.
  • Mori, D., and K. Hirose. 2009. Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy 34:4569–74. doi:10.1016/J.IJHYDENE.2008.07.115.
  • Müller, K., and W. Arlt. 2013. Status and development in hydrogen transport and storage for energy applications. Energy Technology 1:501–11. doi:10.1002/ente.201300055.
  • Muradov, N., and T. Vezirolu. 2005. From hydrocarbon to hydrogen?carbon to hydrogen economy. International Journal of Hydrogen Energy 30:225–37. doi:10.1016/j.ijhydene.2004.03.033.
  • Muthukumar, P., M. Prakash Maiya, and S. S. Murthy. 2005. Experiments on a metal hydride-based hydrogen storage device. International Journal of Hydrogen Energy 30:1569–81. doi:10.1016/J.IJHYDENE.2004.12.007.
  • Naber, J. D., and D. L. Siebers. 1998. Hydrogen combustion under diesel engine conditions. International Journal of Hydrogen Energy 23:363–71. doi:10.1016/S0360-3199(97)00083-9.
  • Nagasawa, K., F. T. Davidson, A. C. Lloyd, and M. E. Webber. 2019. Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles. Applied Energy 235:1001–16. doi:10.1016/J.APENERGY.2018.10.067.
  • National Transportation Statistics [WWW Document]. 2017. DOT (U.S. Dep. Transp. Accessed November 30, 2018. https://www.bts.gov/rita.
  • Navale, S. J., R. R. Kulkarni, and S. S. Thipse. 2017. An experimental study on performance, emission and combustion parameters of hydrogen fueled spark ignition engine with the timed manifold injection system. International Journal of Hydrogen Energy 42:8299–309. doi:10.1016/J.IJHYDENE.2017.01.059.
  • Oak Ridge National Laboratory. n.d. Vehicle technologies market report - 2016. US Department of Energy.
  • Oro, M. V., and E. Bazzo. 2015. Flat heat pipes for potential application in fuel cell cooling. Applied Thermal Engineering 90:848–57. doi:10.1016/J.APPLTHERMALENG.2015.07.055.
  • Oro, M. V., R. G. de Oliveira, and E. Bazzo. 2018. An integrated solution for waste heat recovery from fuel cells applied to adsorption systems. Applied Thermal Engineering 136:747–54. doi:10.1016/J.APPLTHERMALENG.2018.01.081.
  • Paggiaro, R., F. Michl, P. Bénard, and W. Polifke. 2010. Cryo-adsorptive hydrogen storage on activated carbon. II: Investigation of the thermal effects during filling at cryogenic temperatures. International Journal of Hydrogen Energy 35:648–59. doi:10.1016/J.IJHYDENE.2009.11.013.
  • Paster, M. D., R. K. Ahluwalia, G. Berry, A. Elgowainy, S. Lasher, K. McKenney, and M. Gardiner. 2011. Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. International Journal of Hydrogen Energy 36:14534–51. doi:10.1016/J.IJHYDENE.2011.07.056.
  • Pei, P., and H. Chen. 2014. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review. Applied Energy 125:60–75. doi:10.1016/J.APENERGY.2014.03.048.
  • Peschka, W. 1998. Hydrogen: The future cryofuel in internal combustion engines. International Journal of Hydrogen Energy 23:27–43. doi:10.1016/S0360-3199(97)00015-3.
  • Petkov, T., T. Veziroǧlu, and J. S. Of. n.d. An outlook of hydrogen as an automotive fuel. International Journal of Hydrogen Energy 14:449–74. doi:10.1016/0360-3199(89)90031-1.
  • Physical Hydrogen Storage | Department of Energy [WWW Document]. n.d. Accessed February.2 2018. https://www.energy.gov/eere/fuelcells/physical-hydrogen-storage.
  • Piela, P., and J. Mitzel. 2015. Polymer electrolyte membrane fuel cell efficiency at the stack level. Journal of Power Sources 292:95–103. doi:10.1016/J.JPOWSOUR.2015.05.043.
  • Ram, B. G. 2008. Hydrogen fuel: production, transport, and storage. USA: CRC Press.
  • Reitz, R. D. 2013. Directions in internal combustion engine research. Combustion and Flame 160:1–8. doi:10.1016/j.combustflame.2012.11.002.
  • Ren, G., G. Ma, and N. Cong. 2015. Review of electrical energy storage system for vehicular applications. Renewable and Sustainable Energy Reviews 41:225–36. doi:10.1016/J.RSER.2014.08.003.
  • Rogers, E. M. 2003. Diffusion of innovations. USA: Free Press.
  • Sakintuna, B., F. Lamari-Darkrim, and M. Hirscher. 2007. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy 32:1121–40. doi:10.1016/J.IJHYDENE.2006.11.022.
  • Salvi, B. L., and K. A. Subramanian. 2015. Sustainable development of road transportation sector using hydrogen energy system. Renewable and Sustainable Energy Reviews 51:1132–55. doi:10.1016/J.RSER.2015.07.030.
  • Satyapal, S., J. Petrovic, C. Read, G. Thomas, and G. Ordaz. 2007. The U.S. Department of energy’s national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements. Catalysis Today 120:246–56. doi:10.1016/J.CATTOD.2006.09.022.
  • Schlapbach, L., and A. Züttel. 2010. Hydrogen-storage materials for mobile applications. In Materials for sustainable energy, ed. by Dusastre, V., 265–70. UK: Co-Published with Macmillan Publishers Ltd. doi:10.1142/9789814317665_0038.
  • Sharma, S., and S. K. Ghoshal. 2015. Hydrogen the future transportation fuel: From production to applications. Renewable and Sustainable Energy Reviews 43:1151–58. doi:10.1016/J.RSER.2014.11.093.
  • Shi, W., X. Yu, H. Zhang, and H. Li. 2017. Effect of spark timing on combustion and emissions of a hydrogen direct injection stratified gasoline engine. International Journal of Hydrogen Energy 42:5619–26. doi:10.1016/J.IJHYDENE.2016.02.060.
  • Silva, A. P., R. M. Galante, P. R. Pelizza, and E. Bazzo. 2012. A combined capillary cooling system for fuel cells. Applied Thermal Engineering 41:104–10. doi:10.1016/J.APPLTHERMALENG.2012.01.008.
  • Singh, S., S. Jain, V. PS, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel. 2015. Hydrogen: A sustainable fuel for future of the transport sector. Renewable and Sustainable Energy Reviews 51:623–33. doi:10.1016/J.RSER.2015.06.040.
  • Sopena, C., P. M. Diéguez, D. Sáinz, J. C. Urroz, E. Guelbenzu, and L. M. Gandía. 2010. Conversion of a commercial spark ignition engine to run on hydrogen: Performance comparison using hydrogen and gasoline. International Journal of Hydrogen Energy 35:1420–29. doi:10.1016/J.IJHYDENE.2009.11.090.
  • Sorgulu, F., and I. Dincer. 2018. Cost evaluation of two potential nuclear power plants for hydrogen production. International Journal of Hydrogen Energy 43:10522–29. doi:10.1016/J.IJHYDENE.2017.10.165.
  • Srinivasan, S. 2006. Fuel cells: From fundamentals to applications. In Fuel cells, 3–25. Boston, MA: Springer Science & Business Media. doi:10.1007/0-387-35402-6_1.
  • Sun, B., D. Zhang, and F. Liu. 2013. Cycle variations in a hydrogen internal combustion engine. International Journal of Hydrogen Energy 38:3778–83. doi:10.1016/J.IJHYDENE.2012.12.126.
  • Szwaja, S., and K. Grab-Rogalinski. 2009. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy 34:4413–21. doi:10.1016/J.IJHYDENE.2009.03.020.
  • Tanç, B., H. T. Arat, E. Baltacıoğlu, and K. Aydın. 2018. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal Hydrogen Energy. doi:10.1016/J.IJHYDENE.2018.10.112.
  • Tartakovsky, L., and M. Sheintuch. 2018. Fuel reforming in internal combustion engines. Progress in Energy and Combustion Science 67:88–114. doi:10.1016/J.PECS.2018.02.003.
  • Theus, G. 2010. Generation IV nuclear reactors. Advanced Materials and Processes 168:26–29.
  • Tie, S. F., and C. W. Tan. 2013. A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews 20:82–102. doi:10.1016/J.RSER.2012.11.077.
  • Tsujimura, T., and Y. Suzuki. 2017. The utilization of hydrogen in hydrogen/diesel dual fuel engine. International Journal of Hydrogen Energy 42:14019–29. doi:10.1016/J.IJHYDENE.2017.01.152.
  • ULEMCo to Demonstrate First Zero Emission Combustion Engine Truck [WWW Document]. n.d. Accessed December 1, 2018. http://ulemco.com/?p=2638.
  • US Department of Energy. 2017a. Fuel cell technologies office, multi-year research, development, and demonstration plan. Energy Efficiency and Renewable Energy.
  • US Department of Energy. 2017b. Target explanation document: onboard hydrogen storage for light-duty fuel cell vehicles [WWW document]. Accessed November 2, 2018. www.uscar.org.
  • Vasiliev, V. V., and E. V. Morozov. 2001. Mechanics and analysis of composite materials. The Netherlands: Elsevier.
  • Verhelst, S. 2014. Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy 39:1071–85. doi:10.1016/J.IJHYDENE.2013.10.102.
  • Verhelst, S., and R. Sierens. 2001. Hydrogen engine-specific properties. International Journal of Hydrogen Energy 26:987–90. doi:10.1016/S0360-3199(01)00026-X.
  • Verhelst, S., and T. Wallner. 2009. Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science 35:490–527. doi:10.1016/J.PECS.2009.08.001.
  • Veziroğlu, T. N., and S. Şahi˙n. 2008. 21st Century’s energy: Hydrogen energy system. Energy Conversion and Management 49:1820–31. doi:10.1016/j.enconman.2007.08.015.
  • Wallner, T., 2004. Development of combustion concepts for a hydrogen powered internal combustion engine. Diss. Ph. D. thesis, Graz University of Technology.
  • Wang, L., Z. Yang, Y. Huang, D. Liu, J. Duan, S. Guo, and Z. Qin. 2017. The effect of hydrogen injection parameters on the quality of hydrogen–Air mixture formation for a PFI hydrogen internal combustion engine. International Journal of Hydrogen Energy 42:23832–45. doi:10.1016/J.IJHYDENE.2017.04.086.
  • White, C. M., R. R. Steeper, and A. E. Lutz. 2006. The hydrogen-fueled internal combustion engine: A technical review. International Journal of Hydrogen Energy 31:1292–305. doi:10.1016/J.IJHYDENE.2005.12.001.
  • Wilberforce, T., Z. El-Hassan, F. N. Khatib, A. Al Makky, A. Baroutaji, J. G. Carton, and A. G. Olabi. 2017. Developments of electric cars and fuel cell hydrogen electric cars. International Journal of Hydrogen Energy 42:25695–734. doi:10.1016/J.IJHYDENE.2017.07.054.
  • Xiao, X., L. Chen, X. Wang, S. Li, C. Chen, and Q. Wang. 2008. Reversible hydrogen storage properties and favorable co-doping mechanism of the metallic Ti and Zr co-doped sodium aluminum hydride. International Journal of Hydrogen Energy 33:64–73. doi:10.1016/J.IJHYDENE.2007.09.015.
  • Xu, W.-C., K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, and S. Iijima. 2007. Investigation of hydrogen storage capacity of various carbon materials. International Journal of Hydrogen Energy 32:2504–12. doi:10.1016/J.IJHYDENE.2006.11.012.
  • Yan, F., L. Xu, and Y. Wang. 2018. Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews 82:1457–88. doi:10.1016/J.RSER.2017.05.227.
  • Yang, C., and J. Ogden. 2007. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy 32:268–86. doi:10.1016/J.IJHYDENE.2006.05.009.
  • Yang, C., M. Nicholas, and J. Ogden. 2006. Comparison of idealized and real-world city station citing models for hydrogen distribution. Davis, CA: Institute of Transportation Studies, University of California.
  • Yang, Z., F. Zhang, L. Wang, K. Wang, and D. Zhang. 2018. Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine. Energy 147:715–28. doi:10.1016/J.ENERGY.2018.01.068.
  • Ye, L., K. Jiao, Q. Du, and Y. Yin. 2015. Exergy analysis of high-temperature proton exchange membrane fuel cell systems. International Journal of Green Energy 12:917–29. doi:10.1080/15435075.2014.892004.
  • Yoo, E., M. Kim, and H. H. Song. 2018. Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea. International Journal of Hydrogen Energy 43:19267–78. doi:10.1016/J.IJHYDENE.2018.08.088.
  • Yu, X., H. Wu, Y. Du, Y. Tang, L. Liu, and R. Niu. 2016. Research on cycle-by-cycle variations of an SI engine with hydrogen direct injection under lean burn conditions. Applied Thermal Engineering 109:569–81. doi:10.1016/J.APPLTHERMALENG.2016.08.077.
  • Zakaria, I., W. A. N. W. Mohamed, W. H. Azmi, A. M. I. Mamat, R. Mamat, and W. R. W. Daud. 2018. Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. International Journal of Heat and Mass Transfer 119:460–71. doi:10.1016/J.IJHEATMASSTRANSFER.2017.11.137.
  • Zeng, K., and D. Zhang. 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 36:307–26. doi:10.1016/J.PECS.2009.11.002.
  • Zhang, J., T. S. Fisher, P. V. Ramachandran, J. P. Gore, and I. Mudawar. 2005. A review of heat transfer issues in hydrogen storage technologies. Journal of Heat Transfer 127:1391. doi:10.1115/1.2098875.
  • Zhang, Y., L. Wu, X. Hu, and H. Liang, 2008. Model and control for supercapacitor-based energy storage system for metro vehicles, inElectrical machines: And systems, 2008. ICEMS 2008. International Conference on. Wuhan, China: IEEE.
  • Zhou, L. 2005. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 9:395–408. doi:10.1016/J.RSER.2004.05.005.
  • Züttel, A. 2004. Hydrogen storage methods. Naturwissenschaften 91:157–72. doi:10.1007/s00114-004-0516-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.