205
Views
5
CrossRef citations to date
0
Altmetric
Articles

Performance enhancement of a stand-alone induction generator-based wind energy system using neural network controller

&
Pages 274-289 | Received 26 Oct 2019, Accepted 27 Jan 2020, Published online: 12 Feb 2020

References

  • Ahmed, T., K. Nishida, and M. Nakaoka. 2006. Advanced control of PWM converter with variable-speed induction generator. IEEE Transactions on Industry Applications 42 (4):934–45. doi:10.1109/TIA.2006.876068.
  • Arthishri, K., N. Kumaresan, and N. A. Gounden. 2019. Analysis and application of three-phase SEIG with power converters for supplying single-phase grid from wind energy. IEEE Systems Journal 13 (2):1813–22. doi:10.1109/JSYST.4267003.
  • Atallah, A. M., and E. S. F. El Tantawy. 2015. Direct torque control of machine side multilevel converter for variable speed wind turbines. Energy 90:1091–99. doi:10.1016/j.energy.2015.06.065.
  • Chandramohan, K., S. Padmanaban, R. Kalyanasundaram, and F. Blaabjerg. 2018. Modeling of five-phase, self-excited induction generator for wind mill application. Electric Power Components and Systems 46 (3):353–63. doi:10.1080/15325008.2018.1444689.
  • Chatterjee, S., and S. Chatterjee. 2018. Review on the techno-commercial aspects of wind energy conversion system. IET Renewable Power Generation Review 12 (14):1581–608. doi:10.1049/iet-rpg.2018.5197.
  • Chauhan, P. J., and J. K. Chatterjee. 2019. A Novel speed adaptive stator current compensator for voltage and frequency control of standalone SEIG feeding three-phase four-wire system. IEEE Transactions on Sustainable Energy 10 (1):248–56. doi:10.1109/TSTE.2018.2832140.
  • Chen, J., F. Wang, and K. A. Stelson. 2018. A mathematical approach to minimizing the cost of energy for large utility wind turbines. Applied Energy 228:1413–22. doi:10.1016/j.apenergy.2018.06.150.
  • Chilipi, R. R., B. Singh, and S. S. Murthy. 2014. Performance of a self-excited induction generator with dstatcom-dtc drive-based voltage and frequency controller. IEEE Transactions on Energy Conversion 29 (3):545–57. doi:10.1109/TEC.2014.2321184.
  • Dewangan, S., G. Dyanamina, and N. Kumar. 2019. Performance improvement of wind-driven self-excited induction generator using fuzzy logic controller. International Transactions on Electrical Energy Systems 29 (8):1–20. doi:10.1002/etep.v29.8.
  • Ejiofor, O. S., E. U. Candidus, M. C. Victory, and E. C. Ugochukwu. 2019. Wind energy dynamics of the separately excited induction generator. International Journal of Applied Science 2 (1):22–32. doi:10.30560/ijas.v2n1p22.
  • Errouissi, R., A. Al-Durra, S. M. Muyeen, S. Leng, and F. Blaabjerg. 2017. Offset-free direct power control of DFIG under continuous-time model predictive control. IEEE Transactions on Power Electronics 32 (3):2265–77. doi:10.1109/TPEL.2016.2557964.
  • Fernandes, J. F. P., M. Perez-Sanchez, F. F. Silva, P. A. Da, Lopez-jimenez, H. M. Ramos, and P. J. C. Branco. 2019. Optimal energy efficiency of isolated PAT sytems by SEIG excitation tuning. Energy Conversion and Management 183 (1):391–405. doi:10.1016/j.enconman.2019.01.016.
  • Giribabu, D., M. Das, and A. Kumar. 2016. Comparative study of control strategies for the induction generators in wind energy conversion system. Wind and Structures 22 (6):635–62. doi:10.12989/was.2016.22.6.635.
  • Gupta, N., and J. K. Nama. 2019. An experimental investigation of scalar control-based induction motor drive using digital signal processor. International Journal of Power Electronics 10 (1–2):102–32. doi:10.1504/IJPELEC.2019.096817.
  • Jaladi, K. K., and K. S. Sandhu. 2018. DC-link transient improvement of SMC-based hybrid control of DFIG-WES under asymmetrical grid faults. International Transactions on Electrical Energy Systems 28 (12):1–27. doi:10.1002/etep.v28.12.
  • Jaladi, K. K., and K. S. Sandhu. 2019a. A new hybrid control scheme for minimizing torque and flux ripple for DFIG-based WES under random change in wind speed. International Transactions on Electrical Energy Systems 29 (4):1–15. doi:10.1002/etep.v29.4.
  • Jaladi, K. K., and K. S. Sandhu. 2019b. Real-time simulator based hybrid control of DFIG-WES. ISA Transactions 93:325–40. doi:10.1016/j.isatra.2019.03.024.
  • Lopez-Garcia, I., G. Espinosa-Perez, and V. Cardenas. 2019. Power control of a doubly fed induction generator connected to the power grid. International Journal of Control 92 (7):1471–80. doi:10.1080/00207179.2017.1397752.
  • Medjber, A., A. Guessoum, H. Belmili, and A. Mellit. 2016. New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy 106:137–46. doi:10.1016/j.energy.2016.03.026.
  • Pali, B. S., and S. Vadhera. 2018. A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas. Renewable Energy 127:802–10. doi:10.1016/j.renene.2018.05.028.
  • Saha, S., M. E. Haque, and M. A. Mahmud. 2018. Diagnosis and mitigation of sensor malfunctioning in a permanent magnet synchronous generator based wind energy conversion system. IEEE Transactions on Energy Conversion 33 (3):938–48. doi:10.1109/TEC.60.
  • Solum, A., and M. Leijon. 2007. Investigating the overload capacity of a direct-driven synchronous permanent magnet wind turbine generator designed using high-voltage cable technology. International Journal of Energy Research 31 (11):1076–86. doi:10.1002/(ISSN)1099-114X.
  • Uddin, M. N., T. S. Radwan, and M. A. Rahman. 2002. Performances of fuzzy-logic-based indirect vector control for induction motor drive. IEEE Transactions on Industry Application 38 (5):1219–25. doi:10.1109/TIA.2002.802990.
  • Zaky, M. S., and M. K. Metwaly. 2017. A Performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers. IEEE Transactions on Power Electronics 32 (5):3741–53. doi:10.1109/TPEL.2016.2583660.
  • Zeb, K., Z. Ali, K. Saleem, W. Uddin, M. A. Javed, and N. Christofides. 2017. Indirect field-oriented control of induction motor drive based on adaptive fuzzy logic controller. Electrical Engineering 99 (3):803–15. doi:10.1007/s00202-016-0447-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.