332
Views
1
CrossRef citations to date
0
Altmetric
Articles

Assessment of different carbon and salinity level on growth kinetics, lipid, and starch composition of Chlorella vulgaris SAG 211-12

ORCID Icon, ORCID Icon, &
Pages 290-300 | Received 02 Feb 2019, Accepted 05 Feb 2020, Published online: 25 Feb 2020

References

  • An, M., S. Mou, X. Zhang, Z. Zheng, N. Ye, D. Wang, W. Zhang, and J. Miao. 2013. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresource Technology 149:77–83. doi:10.1016/j.biortech.2013.09.027.
  • And, R. D., and R. Janssen. 2006. Overview and recommendations on biofuel standards for transport in the EU (Contribution to WP 3.2 and WP 5.5). Proj. Biofuel Marketplace WIP Renewable Energies.
  • Atabani, A. E., A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 16 (4):2070–93. doi:10.1016/j.rser.2012.01.003.
  • Atikij, T., Y. Syaputri, H. Iwahashi, T. Praneenararat, S. Sirisattha, H. Kageyama, and R. Waditee-Sirisattha. 2019. Enhanced lipid production and molecular dynamics under salinity stress in Green Microalga Chlamydomonas reinhardtii (137C). Marine Drugs 17 (8):484. doi:10.3390/md17080484.
  • Bharti, R. K., D. W. Dhar, R. Prasanna, and A. K. Saxena. 2017. Assessment of biomass and lipid productivity and biodiesel quality of an indigenous microalga Chlorella sorokiniana MIC-G5. International Journal of Green Energy 15 (1):45–52. doi:10.1080/15435075.2017.1351368.
  • Blair, M. F., B. Kokabian, and V. G. Gude. 2014. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering 2 (1):665–74. doi:10.1016/j.jece.2013.11.005.
  • Borowitzka, M. A. 2018. The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation. Journal of Applied Phycology 30 (5):2815–25. doi:10.1007/s10811-018-1399-0.
  • Chandra, R., M. V. Rohit, Y. V. Swamy, and S. Venkata Mohan. 2014. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology 165:279–87. doi:10.1016/j.biortech.2014.02.102.
  • Chang, W. C., H. Q. Zheng, and C. N. N. Chen. 2016. Comparative transcriptome analysis reveals a potential photosynthate partitioning mechanism between lipid and starch biosynthetic pathways in green microalgae. Algal Research 16:54–62. doi:10.1016/j.algal.2016.03.007.
  • Che, R., L. Huang, and X. Yu. 2015. Enhanced biomass production, lipid yield and sedimentation efficiency by iron ion. Bioresource Technology 192:795–98. doi: 10.1016/j.biortech.2015.05.009.
  • Cheirsilp, B., and S. Torpee. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology 110:510–16. doi:10.1016/j.biortech.2012.01.125.
  • Cheng, D., D. Li, Y. Yuan, L. Zhou, X. Li, T. Wu, L. Wang, Q. Zhao, W. Wei, and Y. Sun. 2017. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnology for Biofuels 10:75. doi:10.1186/s13068-017-0753-9.
  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25 (3):294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Choi, H. J., and S. W. Yu. 2015. Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnology and Biotechnological Equipment 29 (3):506–13. doi:10.1080/13102818.2015.1013988.
  • Church, J., J. H. Hwang, K. T. Kim, R. McLean, Y. K. Oh, B. Nam, J. C. Joo, and W. H. Lee. 2017. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology 243:147–53. doi:10.1016/j.biortech.2017.06.081.
  • Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. Del Borghi. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48 (6):1146–51. doi:10.1016/j.cep.2009.03.006.
  • D’Alessandro, E. B., and N. R. A. Filho. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews 58:832–41. doi:10.1016/j.rser.2015.12.162.
  • Gaurav, K., R. Srivastava, J. G. Sharma, R. Singh, and V. Singh. 2015. Molasses based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. International Journal of Green Energy 13 (3):320–27. doi:10.1080/15435075.2014.966268.
  • Han, J., L. Zhang, P. Wang, S. Wang, G. Yang, L. Zhao, and K. Pan. 2017. Potential biodiesel-producing microalgae: Two new strains of. Amphikrikos Sp. International Journal of Green Energy 14 (5):454–62. doi:10.1080/15435075.2016.1277728.
  • Harun, R., M. Singh, G. M. Forde, and M. K. Danquah. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews 14 (3):1037–47. doi:10.1016/j.rser.2009.11.004.
  • Heo, Y. M., H. Lee, C. Lee, J. Kang, J. W. Ahn, Y. M. Lee, K. Y. Kang, Y. E. Choi, and J. J. Kim. 2017. An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal Research 27:286–94. doi:10.1016/j.algal.2017.09.022.
  • Ho, S. H., X. Ye, T. Hasunuma, J. S. Chang, and A. Kondo. 2014. Perspectives on engineering strategies for improving biofuel production from microalgae – A critical review. Biotechnology Advances 32 (8):1448–59. doi:10.1016/j.biotechadv.2014.09.002.
  • International Energy Agency (IEA). 2015. Energy and Climate Change, World Energy Outlook Special Report.
  • Isleten-Hosoglu, M., D. Ayyildiz-Tamis, G. Zengin, and M. Elibol. 2013. Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic condition. Bioresource Technology 131:258–65. doi:10.1016/j.biortech.2012.12.070.
  • Isleten-Hosoglu, M., I. Gultepe, and M. Elibol. 2012. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochemical Engineering Journal 61:11–19. doi:10.1016/j.bej.2011.12.001.
  • Issariyakul, T., and A. K. Dalai. 2014. Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews 31:446–71. doi:10.1016/j.rser.2013.11.001.
  • Ji, X., J. Cheng, D. Gong, X. Zhao, Y. Qi, Y. Su, and W. Ma. 2018. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga- scenedesmus obliquus XJ002. Science of the Total Environment 633:593–99. doi:10.1016/j.scitotenv.2018.03.240.
  • Ji, Y., W. Hu, X. Li, G. Ma, M. Song, and H. Pei. 2014. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresource Technology 152:471–76. doi:10.1016/j.biortech.2013.11.047.
  • Kiran, B., K. Pathak, R. Kumar, and D. Deshmukh. 2016. Statistical optimization using Central Composite Design for biomass and lipid productivity of microalga: A step towards enhanced biodiesel production. Ecological Engineering 92:73–81. doi:10.1016/j.ecoleng.2016.03.026.
  • Kleijnen, J. 2017. Regression and Kriging metamodels with their experimental designs in simulation: A review. European Journal of Operational Research 256 (1):1–16. doi:10.1016/j.ejor.2016.06.041.
  • Kong, W. B., H. Yang, Y. T. Cao, H. Song, S. F. Hua, and C. G. Xia. 2013. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology 51 (1):62–69.
  • Kong, W. B., S.-F. Hua, H. Cao, Y.-W. Mu, H. Yang, H. Song, and C.-G. Xia. 2012. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers 43 (3):360–67. doi:10.1016/j.jtice.2011.11.007.
  • Kula, C., and N. A. Sayar. 2019. Multi-objective optimization of a novel crude lipase-catalyzed fatty acid methyl ester (FAME) production using low-order polynomial and Kriging models. International Journal of Green Energy 16 (8):657–65. doi:10.1080/15435075.2019.1608443.
  • Lu, N., X. L. Jiang, F. Chen, and S. T. Yang. 2012. Regulation of lipid metabolism in the snow alga Chlamydomonas nivalis in response to NaCl stress: An integrated analysis by cytomic and lipidomic approaches. Process Biochemistry 47 (7):1163–70. doi:10.1016/j.procbio.2012.04.011.
  • Luangpipat, T., and Y. Chisti. 2016. Biomass and oil production by chlorella vulgaris and four other microalgae- effects of salinity and other factors. Journal of Biotechnology 257:47–57. doi:10.1016/j.jbiotec.2016.11.029.
  • Lv, J. M., L. H. Cheng, X. H. Xu, L. Zhang, and H. L. Chen. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 101 (17):6797–804. doi:10.1016/j.biortech.2010.03.120.
  • Makareviciene, V., V. Skorupskaite, and V. Andruleviciute. 2013. Biodiesel fuel from microalgae-promising alternative fuel for the future: A review. Reviews in Environmental Science and Bio/Technology 12:119–30. doi:10.1007/s11157-013-9312-4.
  • Malapascua, J. R., K. Ranglova, and J. Masojidek. 2019. Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor. Photosynthetica 57 (1):103–12. doi:10.32615/ps.2019.031.
  • Mandenius, C. F., and A. Brundin. 2008. Bioprocess optimization using design-of-experiments methodology. Biotechnology Progress 24 (6):1191–203. doi:10.1002/btpr.67.
  • Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14:217–32. doi:10.1016/j.rser.2009.07.020.
  • Megazyme Total Starch Assay Procedure. Accessed January 10, 2017. https://secure.megazyme.com/files/booklet/k-tsta_data.pdf
  • Melo, M., S. Fernandes, N. Caetano, and M. T. Borges. 2017. Chlorella vulgaris (SAG 211-12) biofilm formation capacity and proposal of a rotating flat plate photobioreactor for more sustainable biomass production. Journal Applied Phycology 30 (2):887–89. doi:10.1007/s10811-017-1290-4.
  • Mumtaz, M. W., A. Adnan, F. Anwar, H. Mukhtar, M. A. Raza, F. Ahmad, and U. Rashid. 2012. Response surface methodology: An emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies 5 (9):3307–28. doi:10.3390/en5093307.
  • Münkel, R., U. Schmid-Staiger, A. Werner, and T. Hirth. 2013. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella Vulgaris. Biotechnology and Bioengineering 110 (11):2882–93. doi:10.1002/bit.24948.
  • Pandit, P. R., M. H. Fulekar, and M. S. L. Karuna. 2017. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and. Chlorella Vulgaris. Environmental Science and Pollution Research 24 (15):13437–51. doi:10.1007/s11356-017-8875-y.
  • Ren, H. Y., B. F. Liu, F. Kong, L. Zhao, G. J. Xie, and N. Q. Ren. 2014. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresource Technology 169:763–67. doi:10.1016/j.biortech.2014.06.062.
  • Safi, C., B. Zebib, O. Merah, P. Y. Pontalier, and C. Vaca-Garcia. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 35:265–78. doi:10.1016/j.rser.2014.04.007.
  • Sarayloo, E., S. Simsek, Y. S. Unlu, G. Cevahir, C. Erkey, and I. H. Kavakli. 2018. Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresource Technology 250:764–69. doi:10.1016/j.biortech.2017.11.105.
  • Shah, S. M. U., A. Ahmad, M. F. Othman, and M. A. Abdullah. 2014. Effects of palm oil mill effluent media on cell growth and lipid content of Nannochloropsis oculata and. Tetraselmis Suecica. International Journal of Green Energy 13 (2):200–07. doi:10.1080/15435075.2014.938340.
  • Shah, S. M. U., and M. A. Abdullah. 2018. Effects of macro/micronutrients on green and brown microalgal cell growth and fatty acids in photobioreactor and open-tank systems. Biocatalysis and Agricultural Biotechnology 14:10–17. doi:10.1016/j.bcab.2018.01.011.
  • Sharma, A. K., P. K. Sahoo, S. Singhal, and A. Patel. 2016. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech 6:116. doi:10.1007/s13205-016-0434-6.
  • Sharma, K. K., H. Schuhmann, and P. M. Schenk. 2012. High lipid induction in microalgae for biodiesel production. Energies 5 (5):1532–53. doi:10.3390/en5051532.
  • Sigma-Aldrich. 2018. GC Analysis of a 37-Component FAME Mix on SPTM-2560. Accessed January 10, 2018. https://www.sigmaaldrich.com/technical-documents/articles/analyticalapplications/gc/gc-analysis-of-a-37-component-fame-mix-g005366.html
  • Singh, P., A. Guldhe, S. Kumari, I. Rawat, and F. Bux. 2015. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal 94:22–29. doi:10.1016/j.bej.2014.10.019.
  • Venkata Mohan, S., and M. P. Devi. 2014. Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. Bioresource Technology 165:288–94. doi:10.1016/j.biortech.2014.02.103.
  • Wang, T., H. Ge, T. Liu, X. Tian, Z. Wang, M. Guo, J. Chu, and Y. Zhuang. 2016. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. Journal of Biotechnology 228:18–27. doi:10.1016/j.jbiotec.2016.04.025.
  • Witek-Krowiak, A., K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda. 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology 160:150–60. doi:10.1016/j.biortech.2014.01.021.
  • Xia, L., J. Rong, H. Yang, Q. He, D. Zhang, and C. Hu. 2014. NaCl as an effective inducer for lipid accumulation in freshwater microalgae. Desmodesmus Abundans. Bioresource Technology 161:402–09. doi:10.1016/j.biortech.2014.03.063.
  • Yang, F., W. Xiang, X. Sun, H. Wu, T. Li, and L. Long. 2014. A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature. Marine Drugs 12 (3):1258–70. doi:10.3390/md12031258.
  • Yang, H., Q. He, and C. Hu. 2015. Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50. Bioresource Technology 187:221–27. doi:10.1016/j.biortech.2015.03.125.
  • Yang, J., X. Cui, Y. Feng, G. Jing, L. Kang, and M. Luo. 2017. Experimental study on microalgae cultivation in novel photobioreactor of concentric double tubes with aeration pores along tube length direction. International Journal of Green Energy 14 (15):1269–76. doi:10.1080/15435075.2017.1402772.
  • Zhang, R. L., J. H. Wang, L. Y. Cheng, Y. J. Tang, and Z. Y. Chi. 2019. Selection of microalgae strains for bicarbonate-based integrated carbon capture and algal production system to produce lipid. International Journal of Green Energy 16 (11):825–33. doi:10.1080/15435075.2019.1641103.
  • Zhao, S., 2012. Analysis of Fatty Acid Methyl Esters by Agilent 5975T LTM GCMS Accessed December 5, 2016. http://hpst.cz/sites/default/files/attachments/5991-1437en-analysis-fatty-acid-methyl-esters-agilent-5975t-ltm-gc-ms.pdf
  • Zhu, L., S. Huo, and L. Qin. 2013. Microalgae-based biodiesel refinery: Sustainability concerns and challenges. International Journal of Green Energy 12 (6):595–602. doi:10.1080/15435075.2013.867406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.