516
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Performance of a large-scale greenhouse solar dryer integrated with phase change material thermal storage system for drying of chili

, , , , &

References

  • Adrian, B. 1988. Advanced engineering thermodynamics. New York: John Wiley & Sons.
  • Ahern, J. E. 1980. Exergy method of energy systems analysis. New York, USA: John Wiley & Sons.
  • Akbulut, A., and A. Durmuş. 2010. Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35 (4):1754–63. doi:10.1016/j.energy.2009.12.028.
  • Akpinar, E. K. 2004. Energy and exergy analyses of drying of red pepper slices in a convective type dryer. International Communications in Heat and Mass Transfer 31 (8):1165–76. doi:10.1016/j.icheatmasstransfer.2004.08.014.
  • Akpinar, E. K. 2011. Drying of parsley leaves in a solar dryer and under open sun: Modeling, energy and exergy aspects. Journal of Food Process Engineering 34 (1):27–48. doi:10.1111/j.1745-4530.2008.00335.x.
  • Akpinar, E. K., A. Midilli, and Y. Bicer. 2005. Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management 46 (15–16):2530–52. doi:10.1016/j.enconman.2004.12.008.
  • Al-Juamily, K. E. J., A. J. N. Khalifa, and T. A. Yassen. 2007. Testing of the performance of a fruit and vegetable solar drying system in Iraq. Desalination 209 (1):163–70. doi:10.1016/j.desal.2007.04.026.
  • ASHRAE. 1997. ASHRAE handbook: Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
  • Aviara, N. A., L. N. Onuoha, O. E. Falola, and J. C. Igbeka. 2014. Energy and exergy analyses of native cassava starch drying in a tray dryer. Energy 73:809–17. doi:10.1016/j.energy.2014.06.087.
  • Bala, B., M. Ashraf, M. Uddin, and S. Janjai. 2005. Experimental and neural network prediction of the performance of a solar tunnel drier for drying jackfruit bulbs and leather. Journal of Food Process Engineering 28 (6):552–66. doi:10.1111/j.1745-4530.2005.00042.x.
  • Bala, B., M. Hossain, and M. Mondol. 1997. Photovoltaic based forced convection solar tunnel dryer for pineapple. Journal of Agricultural Engineering 32 (4):23–31.
  • Beigi, M., M. Tohidi, and M. Torki-Harchegani. 2017. Exergetic analysis of deep-bed drying of rough rice in a convective dryer. Energy 140:374–82. doi:10.1016/j.energy.2017.08.100.
  • Çakmak, G., and C. Yildiz. 2011. The drying kunetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food and Bioproducts Processing 89 (2):103–08. doi:10.1016/j.fbp.2010.04.001.
  • Castillo Téllez, M., I. Pilatowsky Figueroa, B. Castillo Téllez, E. C. López Vidaña, and A. López Ortiz. 2018. Solar drying of Stevia (Rebaudiana Bertoni) leaves using direct and indirect technologies. Solar Energy 159:898–907. doi:10.1016/j.solener.2017.11.031.
  • Chauhan, P. S., and A. Kumar. 2018. Thermal modeling and drying kinetics of gooseberry drying inside north wall insulated greenhouse dryer. Applied Thermal Engineering 130:587–97. doi:10.1016/j.applthermaleng.2017.11.028.
  • Chowdhury, M. M. I., B. K. Bala, and M. A. Haque. 2011. Energy and exergy analysis of the solar drying of jackfruit leather. Biosystems Engineering 110 (2):222–29. doi:10.1016/j.biosystemseng.2011.08.011.
  • Çiftçioğlu, G. A., F. Kadırgan, M. A. N. Kadırgan, and G. Kaynak. 2020. Smart agriculture through using cost-effective and high-efficiency solar drying. Heliyon 6 (2):e03357. doi:10.1016/j.heliyon.2020.e03357.
  • DEDE. 2015. Annual report, Department of Alternative Energy and Development. Bangkok: Ministry of Energy of Thailand, 89.
  • Department of Agricultural Extension. 2019. Annual report, department of agricultural extension. Bangkok, Thailand: Ministry of Agricultural and Cooperatives of Thailand.
  • Dincer, I., and M. A. Rosen. 2007. Exergy: Energy, environment and sustainability. Amsterdam: Elsevier.
  • Dissa, A. O., D. J. Bathiebo, H. Desmorieux, O. Coulibaly, and J. Koulidiati. 2011. Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy 36 (5):2517–27. doi:10.1016/j.energy.2011.01.044.
  • Ekechukwu, O., and B. Norton. 1999. Review of solar-energy drying systems II: An overview of solar drying technology. Energy Conversion and Management 40 (6):615–55. doi:10.1016/S0196-8904(98)00093-4.
  • El-Sebaii, A. A., and S. M. Shalaby. 2012. Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews 16 (1):37–43. doi:10.1016/j.rser.2011.07.134.
  • Esakkimuthu, S., A. H. Hassabou, C. Palaniappan, A. Spinnler, J. Blumenberg, and R. Velraj. 2013. Experimental investigation on phase change material based thermal storage system for solar air heating applications. Solar Energy 88:144–53. doi:10.1016/j.solener.2012.11.006.
  • Escobar-Ochoa, M., S. Cuervo-Andrade, and S. Rincon-Prat. 2018. Methodology for the design of a thermal energy storage module for a solar tunnel dryer using phase change material (PCM). Revista UIS Ingenierías 17 (1):9–20. doi:10.18273/revuin.v17n1-2018001.
  • Fudholi, A., K. Sopian, M. Ruslan, M. Alghoul, and M. Sulaiman. 2010. Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews 14 (1):1–30. doi:10.1016/j.rser.2009.07.032.
  • Fudholi, A., K. Sopian, M. H. Yazdi, M. H. Ruslan, M. Gabbasa, and H. A. Kazem. 2014. Performance analysis of solar drying system for red chili. Solar Energy 99:47–54. doi:10.1016/j.solener.2013.10.019.
  • Güler, H. Ö., A. Sözen, A. D. Tuncer, F. Afshari, A. Khanlari, C. Şirin, and A. Gungor. 2020. Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh. Solar Energy 197:371–84. doi:10.1016/j.solener.2020.01.021.
  • Janjai, S. 2012. A greenhouse type solar dryer for small-scale dried food industries: Development and dissemination. International Journal of Energy and Environment 3 (3):383–98.
  • Janjai, S., and B. K. Bala. 2012. Solar drying technology. Food Engineering Reviews 4 (1):16–54. doi:10.1007/s12393-011-9044-6.
  • Janjai, S., C. Chaichoet, and P. Intawee. 2005b. Performance of PV-ventilated greenhouse dryer for drying bananas. Asian Journal on Energy and Environment 6 (2):133–39.
  • Janjai, S., P. Intawee, J. Kaewkiew, C. Sritus, and V. Khamvongsa. 2011. A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic. Renewable Energy 36 (3):1053–62. doi:10.1016/j.renene.2010.09.008.
  • Janjai, S., V. Khamvongsa, and B. Bala. 2007b. Development, design and performance of a PV-ventilated greenhouse dryer. International Energy Journal 8:249–58.
  • Janjai, S., J. Laksanaboonsong, M. Nunez, and A. Thongsathitya. 2005a. Development of a method generating operational solar radiation maps from satellite data for a tropical environment. Solar Energy 78 (6):739–51. doi:10.1016/j.solener.2004.09.009.
  • Janjai, S., N. Lamlert, P. Intawee, B. Mahayothee, B. K. Bala, M. Nagle, and J. Müller. 2009a. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy 83 (9):1550–65. doi:10.1016/j.solener.2009.05.003.
  • Janjai, S., N. Lamlert, P. Intawee, B. Mahayothee, Y. Boonrod, M. Haewsungcharern, B. Bala, M. Nagle, and J. Müller. 2009b. Solar drying of peeled longan using a side loading type solar tunnel dryer: Experimental and simulated performance. Drying Technology 27 (4):595–605. doi:10.1080/07373930802716383.
  • Janjai, S., and B. Mahayoothee. 2016. Development of dried banana production in a dried banana community of Bangkratum District, Phitsanulok Province. Veridian E-Journal, Science and Technology Silpakorn University 3 (6):310–22. (in Thai).
  • Janjai, S., P. Pankaew, J. Laksanaboonsong, B. K. Bala, and Y. Sawatdisawanee. 2007a. Development of a model for calculation monthly average of hourly global solar radiation from geostationary satellite data. International Conference on Solar Radiation and Day Lighting. New Delhi, India.
  • Janjai, S., K. Tohsing, S. Pattarapanitchai, S. Buntoung, B. Mahayothee, T. Mundpookhier, Y. Boonrod, and S. K 2017. Experimental performance and artificial neural network modeling of parabolic greenhouse type solar dryers. Proceeding of Second Nordic Baltic Drying Conference, 7-9 June 2017. Hamburg, Germany.
  • Joshi, C. 2016. Tamil Nadu Mango farmers install Green house solar dryers adapting Covestro’s technology in pursuit of generating additional revenues. https://www.covestro.in/en/media/news-releases/tamil-nadu-mango-farmers-install-green-house-solar-dryers-adapting-technology-from-covestro
  • Kareem, M. W., K. Habib, M. H. Ruslan, and B. B. Saha. 2017. Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa). Renewable Energy 113:281–92. doi:10.1016/j.renene.2016.12.099.
  • Khanali, M., M. Aghbashlo, S. Rafiee, and A. Jafari. 2013. Exergetic performance assessment of plug flow fluidised bed drying process of rough rice. International Journal of Exergy 13 (3):387–408. doi:10.1504/IJEX.2013.057357.
  • Khanlari, A., A. Sözen, F. Afshari, C. Şirin, A. D. Tuncer, and A. Gungor. 2020a. Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber. Science of the Total Environment 709:136198. doi:10.1016/j.scitotenv.2019.136198.
  • Khanlari, A., A. Sözen, C. Şirin, A. D. Tuncer, and A. Gungor. 2020b. Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater. Journal of Cleaner Production 251:119672. doi:10.1016/j.jclepro.2019.119672.
  • Kishk, S. S., R. A. ElGamal, and G. M. ElMasry. 2019. Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products. Renewable Energy 133:307–16. doi:10.1016/j.renene.2018.10.028.
  • Krishnan, S., and B. Sivaraman. 2017. Experimental investigations on thermal storage in a solar dryer. International Energy Journal 17:23–26.
  • Kumar, A., and G. Tiwari. 2007. Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes. Journal of Food Engineering 79 (4):1337–50. doi:10.1016/j.jfoodeng.2006.04.026.
  • Kumar, M., S. K. Sansaniwal, and P. Khatak. 2016. Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews 55:346–60. doi:10.1016/j.rser.2015.10.158.
  • Kumar, P. 2015. Experimental analysis on forced draft solar dryer with phase change material. Internatinal Journal of Innovations in Engineering and Technology 6 (1):165–72.
  • Li, Q., S. S. M. Tehrani, and R. A. Taylor. 2017. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage. Energy 121:220–37. doi:10.1016/j.energy.2017.01.023.
  • Maskan, A., S. Kaya, and M. Maskan. 2002. Hot air and sun drying of grape leather (pestil). Journal of Food Engineering 54 (1):81–88. doi:10.1016/S0260-8774(01)00188-1.
  • Midilli, A., and H. Kucuk. 2003. Energy and exergy analyses of solar drying process of pistachio. Energy 28 (6):539–56. doi:10.1016/S0360-5442(02)00158-5.
  • Montgomery, D. C., E. A. Peck, and G. G. Vining. 2012. Introduction to linear regression analysis. New York, NY: John Wiley & Sons.
  • Mu, S., S. Yu, B. Zhang, and D. Zhao. 2011. Experimental research of grape drying using solar dryer with latent heat storage system. Proceedings of 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM 2011), 19-20 Febuary 2011. Changsha, China.
  • Mühlbauer, W., W. Hofacker, H.-M. Müller, and M. Thaler. 2013. Die kaltlufttrocknung von Weizen unter energetischen und mikrobiologischen Aspekt. Grundlagen der Landtechnik 31.
  • Murthy, M. V. R. 2009. A review of new technologies, models and experimental investigations of solar driers. Renewable and Sustainable Energy Reviews 13 (4):835–44. doi:10.1016/j.rser.2008.02.010.
  • Mustayen, A. G. M. B., S. Mekhilef, and R. Saidur. 2014. Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews 34:463–70. doi:10.1016/j.rser.2014.03.020.
  • Nabard Consultancy Services. 2019. Impact evaluation study report on “Green house solar dryers on farming community in Tamil Nadu”, India, p. 6.
  • Ndukwu, M., L. Bennamoun, F. Abam, A. Eke, and D. Ukoha. 2017. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renewable Energy 113:1182–92. doi:10.1016/j.renene.2017.06.097.
  • Ozgener, L., and O. Ozgener. 2009. Exergy analysis of drying process: An experimental study in solar greenhouse. Drying Technology 27 (4):580–86. doi:10.1080/07373930802716276.
  • Pankaew, P., K. Tohsing, B. Mahayothee, and S. Janjai. 2016. A Large-scale parabolic greenhouse type solar dryer: Field performance and utilization in agro-industries of dried bananas in Thailand. Proceeding of the 20th International Drying Symposium (IDS 2016), 7-10 August 2016, Gifu, Japan.
  • Petela, R. 2003. Exergy of undiluted thermal radiation. Solar Energy 74 (6):469–88. doi:10.1016/S0038-092X(03)00226-3.
  • Pirasteh, G., R. Saidur, S. Rahman, and N. Rahim. 2014. A review on development of solar drying applications. Renewable and Sustainable Energy Reviews 31:133–48. doi:10.1016/j.rser.2013.11.052.
  • Pochont, N. R., M. N. Mohammad, B. T. Pradeep, and P. V. Kumar. 2020. A comparative study of drying kinetics and quality of Indian red chilli in solar hybrid greenhouse drying and open sun drying. Materials Today: Proceedings 21:286–90.
  • Prakash, O., A. Kumar, and V. Laguri. 2016. Performance of modified greenhouse dryer with thermal energy storage. Energy Reports 2:155–62. doi:10.1016/j.egyr.2016.06.003.
  • Rabha, D. K., and P. Muthukumar. 2017. Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system. Solar Energy 149:214–26. doi:10.1016/j.solener.2017.04.012.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2019. A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications. Applied Thermal Engineering 146:910–20. doi:10.1016/j.applthermaleng.2018.10.055.
  • Sangamithra, A., G. J. Swamy, R. S. Prema, R. Priyavarshini, V. Chandrasekar, and S. Sasikala. 2014. An overview of a polyhouse dryer. Renewable and Sustainable Energy Reviews 40:902–10. doi:10.1016/j.rser.2014.08.007.
  • Schirmer, P., S. Janjai, A. Esper, R. Smitabhindu, and W. Mühlbauer. 1996. Experimental investigation of the performance of the solar tunnel dryer for drying bananas. Renewable Energy 7 (2):119–29. doi:10.1016/0960-1481(95)00138-7.
  • Shalaby, S., M. Bek, and A. El-Sebaii. 2014. Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews 33:110–16. doi:10.1016/j.rser.2014.01.073.
  • Shalaby, S. M., and M. A. Bek. 2014. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Conversion and Management 83:1–8. doi:10.1016/j.enconman.2014.03.043.
  • Shalaby, S. M., and M. A. Bek. 2015. Drying nerium oleander in an indirect solar dryer using phase change material as an energy storage medium. Journal of Clean Energy Technologies 3 (3):176–80. doi:10.7763/JOCET.2015.V3.191.
  • Shamekhi-Amiri, S., T. B. Gorji, M. Gorji-Bandpy, and M. Jahanshahi. 2018. Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system. Case Studies in Thermal Engineering 12:677–86. doi:10.1016/j.csite.2018.08.007.
  • Sharma, A., C. Chen, and N. V. Lan. 2009. Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews 13 (6):1185–210. doi:10.1016/j.rser.2008.08.015.
  • Sharma, V. K., A. Colangelo, and G. Spagna. 1995. Experimental investigation of different solar dryers suitable for fruit and vegetable drying. Renewable Energy 6 (4):413–24. doi:10.1016/0960-1481(94)00075-H.
  • Singh, P., V. Shrivastava, and A. Kumar. 2018. Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews 82:3250–62. doi:10.1016/j.rser.2017.10.020.
  • Sodha, M. S., N. K. Bansal, A. Kumar, P. K. Bansal, and M. Malik. 1987. Solar crop drying. Boca Ratan, Florida: CRC Press.
  • Soponronnarit, S. 1995. Solar drying in Thailand. Energy for Sustainable Development 2 (2):19–25. doi:10.1016/S0973-0826(08)60120-9.
  • Sreerag, T., and K. Jithish. 2016. Analysis of an indirect air heater solar dryer with multiple PCM. International Journal of Sustainable Design 3 (1):38–59. doi:10.1504/IJSDES.2016.078955.
  • Srimaneechai, C., and P. Triwong. 2017. Study on the impact and value of promoting solar drying systems (Greenhouse model) from government. Proceeding of 13th Conference on Energy Network of Thailand, 31 May – 2 June 2017. Chiang Mai, Thailand. pp. 1409–16 (in Thai).
  • Srivastava, A. K., S. K. Shukla, and S. Mishra. 2014. Evaluation of solar dryer/air heater performance and the accuracy of the result. Energy Procedia 57:2360–69. doi:10.1016/j.egypro.2014.10.244.
  • Syahrul, S., F. Hamdullahpur, and I. Dincer. 2002. Exergy analysis of fluidized bed drying of moist particles. Exergy 2 (2):87–98. doi:10.1016/S1164-0235(01)00044-9.
  • Tao, Y. B., and Y. L. He. 2011. Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary. Applied Energy 88:4172–79. doi:10.1016/j.apenergy.2011.04.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.