147
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The effect of the activation of carboxyl group and hydrogen migration on reaction pathway during the pyrolysis of triglycerides

, , &
Pages 676-686 | Received 27 Mar 2020, Accepted 26 Jun 2020, Published online: 14 Jul 2020

References

  • Adebanjo, A. O., A. K. Dalai, and N. N. Bakhshi. 2005. Production of diesel-like fuel and other value-added chemicals from pyrolysis of animal fat. Energy&Fuels 19 (4):1735–41. doi:10.1021/ef040091b.
  • Alhroub, I., W. Shen, J. Yan, and M. Sulkes. 2015. Thermal cracking of triacylglycerols: Molecular beam studies. Journal of Analytical and Applied Pyrolysis 115:24–36. doi:10.1016/j.jaap.2015.06.010.
  • Altin, R., S. Cetinkaya, and H. S. Yücesu. 2001. The potential of using vegetable oil fuels as fuel for diesel engines. Energy Conversion and Management 42:529–38. doi:10.1016/S0196-8904(00)00080-7.
  • Asomaning, J., P. Mussone, and D. C. Bressler. 2014a. Thermal deoxygenation and pyrolysis of oleic acid. Journal of Analytical and Applied Pyrolysis 105:1–7. doi:10.1016/j.jaap.2013.09.005.
  • Asomaning, J., P. Mussone, and D. C. Bressler. 2014b. Pyrolysis of polyunsaturated fatty acids. Fuel Processing Technology 120:89–95. doi:10.1016/j.fuproc.2013.12.007.
  • Beims, R. F., V. Botton, L. Ender, D. R. Schart, E. L. Simionatto, H. F. Meier, and V. R. Wiggers. 2018. Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel 217:175–84. doi:10.1016/j.fuel.2017.12.109.
  • Biswas, S., P. Mohanty, and D. Sharma. 2013. Studies on synergism in the cracking and co-cracking of jatropha oil, vacuum residue and high density polyethylene: Kinetic analysis. Fuel Processing Technology 106:673–83. doi:10.1016/j.fuproc.2012.10.001.
  • Chang, J. S., J. C. Cheng, T. R. Ling, J. M. Chern, G. B. Wang, T. C. Chou, and C. T. Kuo. 2017. Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of Taiwan Institute of Chemical Engineers 73:1–11. doi:10.1016/j.jtice.2016.04.014.
  • Chen, G. Y., C. Liu, W. C. Ma, X. X. Zhang, Y. B. Li, B. B. Yan, and W. H. Zhou. 2014. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology 166:500–07. doi:10.1016/j.biortech.2014.05.090.
  • Demirbas, A. 2007. Progress and recent trends in biofuels. Progress in Energy and Combustion Science 33 (1):1–18. doi:10.1016/j.pecs.2006.06.001.
  • Gallezot, P. 2007. Process options for converting renewable feedstocks to bioproducts. Green Chemistry 9 (4):295–302. doi:10.1039/B615413A.
  • Graboski, M. S., and R. L. McCormick. 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science 24:125–64. doi:10.1016/S0360-1285(97)00034-8.
  • Hartgers, W. A., J. S. S. Damsté, and J. W. de Leeuw. 1995. Curie-point pyrolysis of sodium salts of functionalized fatty acids. Journal of Analytical and Applied Pyrolysis 34 (2):191–217. doi:10.1016/0165-2370(94)00881-Z.
  • Huber, G. W., and A. Corma. 2007. Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition 46 (38):7184–201. doi:10.1002/anie.200604504.
  • Katikaneni, S. P. R., J. D. Adjaye, and N. N. Bakhshi. 1995. Studies on the catalytic conversion of canola oil to hydrocarbons: Influence of hybrid catalysts and steam. Energy Fuel 9 (4):599–609. doi:10.1021/ef00052a005.
  • Kraiem, T., A. B. Hassen-Trabelsi, S. Naoui, H. Belayouni, and M. Jeguirim. 2015. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology 138:404–12. doi:10.1016/j.fuproc.2015.05.007.
  • Kubátová, A. A., G. J. Casey, M. J. Linnen, W. S. Seames, I. P. Smoliakova, and E. I. Kozliak. 2015. Cleavage of carboxylic acid moieties in triacylglycerides during non-catalytic pyrolysis. Journal of American Oil Chemists Society 92 (5):755–67. doi:10.1007/s11746-015-2633-4.
  • Lam, S. S., R. K. Liew, A. Jusoh, C. T. Chong, F. N. Ani, and H. A. Chase. 2016. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable and Sustainable Energy Reviews 53:741–53. doi:10.1016/j.rser.2015.09.005.
  • Lappi, H., and R. Alén. 2009. Production of vegetable oil-based biofuels—thermochemical behavior of fatty acid sodium salts during pyrolysis. Journal of Analytical and Applied Pyrolysis 86 (2):274–80. doi:10.1016/j.jaap.2009.07.005.
  • Lappi, H., and R. Alén. 2011. Pyrolysis of vegetable oil soaps—palm, olive, rapeseed and castor oils. Journal of Analytical and Applied Pyrolysis 91 (1):154–58. doi:10.1016/j.jaap.2011.02.003.
  • Liu, Q., P. Liu, Z. X. Xu, Z. X. He, and Q. Wang. 2018. Bio-fuel oil characteristic of rice bran wax pyrolysis. Renewable Energy 119:193–202. doi:10.1016/j.renene.2017.12.012.
  • Maher, K. D., K. M. Kirkwood, M. R. Gray, and D. C. Bressler. 2008. Pyrolytic decarboxylation and cracking of stearic acid. Industrial & Engineering Chemistry Research 47 (15):5328–36. doi:10.1021/ie0714551.
  • Mâncio, A. A., K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leao, R. O. M. A. de Souza, M. E. Araujo, L. E. P. Borges, et al. 2017a. Process analysis of physicochemical properties and chemical composition of organic liquid products obtained by thermochemical conversion of palm oil. Journal of Analytical and Applied Pyrolysis 123:284–95. doi:10.1016/j.jaap.2016.11.017.
  • Mâncio, A. A., K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leao, R. O. M. A. de Souza, M. E. Araujo, L. E. P. Borges, et al. 2017b. Process analysis of physicochemical properties and chemical composition of organic liquid products obtained by thermochemical conversion of palm oil. Journal of Analytical and Applied Pyrolysis 123:284–95. doi:10.1016/j.jaap.2016.11.017.
  • Meher, L. C., D. V. Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 10 (3):248–68. doi:10.1016/j.rser.2004.09.002.
  • Melero, J. A., J. Iglesias, and A. Garcia. 2012. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy & Environmental Science 5 (6):7393–420. doi:0.1039/C2EE21231E.
  • Palanisamy, S., and B. S. Gevert. 2016. Study of non-catalytic thermal decomposition of triglyceride at hydroprocessing condition. Applied Thermal Engineerin 107:301–10. doi:10.1016/j.applthermaleng.2016.06.167.
  • Perígolo, D. M., F. G. F. de Paula, M. G. Rosmaninho, P. P. de Souza, R. M. Lago, and M. H. Araujo. 2017. Conversion of fatty acids into hydrocarbon fuels based on a sodium carboxylate intermediate. Catalysis Today 279:260–66. doi:10.1016/j.cattod.2016.04.035.
  • Scholze, B., C. Hanser, and D. Meier. 2001. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl groups, and 13C-NMR. Journal of Analytical and Applied Pyrolysis 58:387–400. doi:10.1016/S0165-2370(00)00173-X.
  • Seifi, H., and S. M. Sadrameli. 2016. Bound cleavage at carboxyl group-glycerol backbone position in thermal cracking of the triglycerides in sunflower oil. Journal of Analytical and Applied Pyrolysis 121:1–10. doi:10.1016/j.jaap.2016.06.006.
  • Taufiqurrahmi, N., and S. Bhatia. 2011. Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy & Environmental Science 4 (4):1087–112. doi:10.1039/C0EE00460J.
  • Wang, Y. P., L. L. Dai, S. Q. Shan, Q. Zen, L. L. Fan, Y. H. Liu, R. Ruan, Y. F. Zhao, and Y. Zhao. 2016. Effect of unsaturation degree on microwave-assisted pyrolysis of fatty acid salts. Journal of Analytical and Applied Pyrolysis 120:247–51. doi:10.1016/j.jaap.2016.05.012.
  • Xu, J. M., J. C. Jiang, and J. P. Zhao. 2016. Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews 58:331–40. doi:10.1016/j.rser.2015.12.315.
  • Xu, L., J. H. Cheng, P. Liu, Q. Wang, Z. X. Xu, Q. Liu, J. Y. Shen, and L. J. Wang. 2019. Production of bio-fuel oil from pyrolysis of plant acidified oil. Renewable Energy 130:910–19. doi:10.1016/j.renene.2018.07.012.
  • Xu, Z. X., J. H. Cheng, H. Song, Q. Wang, Z. X. He, B. Li, P. G. Duan, and X. Hu. 2020a. Production of bio-fuel from plant oil asphalt via pyrolysis. Journal of Energy Institue. doi:10.1016/j.joei.2020.03.007.
  • Xu, Z. X., P. Liu, G. S. He, H. S. Ji, and Q. Wang. 2017a. Behenic acid pyrolysis to produce diesel-like hydrocarbons. Energy Conversion and Management 138:393–99. doi:10.1016/j.enconman.2017.02.015.
  • Xu, Z. X., P. Liu, G. S. Xu, Q. Liu, Z. X. He, and Q. Wang. 2017b. Bio-fuel oil characteristic from catalytic cracking of hydrogenated palm oil. Energy 133:666–75. doi:10.1016/j.energy.2017.05.155.
  • Xu, Z. X., H. Song, P. J. Li, X. Zhu, S. Zhang, Q. Wang, P. G. Duan, and X. Hu. 2020b. A new method for removal of nitrogen in sewage sludge-derived hydrochar with hydrotalcite as the catalyst. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2020.122833.
  • Xu, Z. X., H. Song, Q. Wang, P. J. Li, Z. X. He, Q. Wang, K. Wang, and P. G. Duan. 2020c. Hydrothermal carbonization of sewage sludge: Effect of aqueous phase recycling. Chemical Engineering Journal 387:123410. doi:10.1016/j.cej.2019.123410.
  • Xu, Z. X., L. Xu, J. H. Cheng, Z. X. He, Q. Wang, and X. Hu. 2018. Investigation of pathways for transformation of N-heterocycle compounds during sewage sludge pyrolysis process. Fuel Processing Technology 182:37–44. doi:10.1016/j.fuproc.2018.10.020.
  • Xu, Z. X., C. X. Zhang, Z. X. He, and Q. Wang. 2017c. Pyrolysis Characteristic and kinetics of Polyvinylidene fluoride with and without Pine Sawdust. Journal of Analytical and Applied Pyrolysis 123:402–08. doi:10.1016/j.jaap.2016.10.027.
  • Zandonai, C., P. Yassue-Cordeiro, S. Castellã-Pergher, M. H. N. O. Scaliante, and N. R. C. Fernandes-Machado. 2016. Production of petroleum-like synthetic fuel by hydrocracking of crude soybean oil over ZSM5 zeolite-Improvement of catalyst lifetime by ion exchange. Fuel 172:228–37. doi:10.1016/j.fuel.2015.12.059.
  • Zhang, J. J., and C. Zhao. 2015. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications 51 (97):17249–52. doi:10.1039/C5CC06601H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.