157
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Impact of utilizing reflector, single-axis and two-axis sun trackers on the performance of an evacuated tube solar collector

Pages 742-755 | Received 28 Feb 2020, Accepted 15 Jul 2020, Published online: 10 Aug 2020

References

  • Bava, F., and S. Furbo. 2018. Impact of different improvement measures on the thermal performance of a solar collector field for district heating. Energy 144:816–25. doi:10.1016/j.energy.2017.12.025.
  • Behar, O., A. Khellaf, and K. A. Mohammedi. 2015. A novel parabolic trough solar collector model - validation with experimental data and comparison to engineering equation solver (EES). Energy Conversion and Management 106:1268–81. doi:10.1016/j.enconman.2015.09.045.
  • Carmona, M., and M. Palacio. 2019. Thermal modelling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions. Solar Energy 177:620–33. doi:10.1016/j.solener.2018.11.056.
  • Chen, J. F., L. Zhang, and Y. J. Dai. 2018. Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application. Energy 143:500–16. doi:10.1016/j.energy.2017.10.143.
  • Erdenedavaa, P., A. Adiyabat, A. Akisawa, and E. Otgonjanchiv. 2018. Performance analysis of solar thermal system for heating of a detached house in harsh cold region of Mongolia. Renewable Energy 117:217–26. doi:10.1016/j.renene.2017.10.042.
  • Erdenedavaa, P., A. Akisawa, A. Adiyabat, and E. Otgonjanchiv. 2019. Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia. Renewable Energy 130:613–21. doi:10.1016/j.renene.2018.06.077.
  • Fathabadi, H. 2016. Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators. Renewable Energy 95:485–94. doi:10.1016/j.renene.2016.04.063.
  • Fathabadi, H. 2020a Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate. Renewable Energy 148:1165-73.
  • Fathabadi, H. 2020b. Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors. Solar Energy 195:210-22.
  • Forristall, R. 2003. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. USA: National Renewable Energy Laboratory, Golden.
  • Iordache, F. and V. Iordache. 2014. Efficiency of the flat plate solar thermal collector. Sustainable energy in the built environment-Steps towards nZEB, Proceedings of the Conference for Sustainable Energy (CSE) 271-8.
  • Juanicó, L. E. 2018. Modified vacuum tubes for overheating limitation of solar collectors: A dynamical modeling approach. Solar Energy 171:804–10. doi:10.1016/j.solener.2018.07.021.
  • Kabeel, A. E., A. Khalil, S. S. Elsayed, and A. M. Alatyar. 2015. Modified mathematical model for evaluating the performance of water-in-glass evacuated tube solar collector considering tube shading effect. Energy 89:24–34. doi:10.1016/j.energy.2015.06.072.
  • Kaya, H., K. Arslan, and N. Eltugral. 2018. Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids. Renewable Energy 122:329–38. doi:10.1016/j.renene.2018.01.115.
  • Khan, M. M. A., N. I. Ibrahim, I. M. Mahbubul, H. M. Ali, and F. A. Al-Sulaiman. 2018. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy 166:334–50. doi:10.1016/j.solener.2018.03.014.
  • Kim, H., J. Ham, C. Park, and H. Cho. 2016. Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy 94:497–507. doi:10.1016/j.energy.2015.11.021.
  • Kim, H., J. Kim, and H. Cho. 2017. Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid. Energy 118:1304–12. doi:10.1016/j.energy.2016.11.009.
  • Kim, Y., and T. Seo. 2007. Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renewable Energy 32 (5):772–95. doi:10.1016/j.renene.2006.03.016.
  • Korres, D. N., C. Tzivanidis, I. P. Koronaki, and M. T. Nitsas. 2019. Experimental, numerical and analytical investigation of a U-type evacuated tube collectors’ array. Renewable Energy 135:218–31. doi:10.1016/j.renene.2018.12.003.
  • Kundu, B. 2010. Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient. Applied Energy 87 (7):2243–55. doi:10.1016/j.apenergy.2010.01.008.
  • Mao, C., M. Li, N. Li, M. Shan, and X. Yang. 2019. Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting. Applied Energy 238:54–68. doi:10.1016/j.apenergy.2019.01.006.
  • Martínez-Rodríguez, G., A. L. Fuentes-Silva, and M. Picón-Núñez. 2018. Solar thermal networks operating with evacuated-tube collectors. Energy 146:26–33. doi:10.1016/j.energy.2017.04.165.
  • Osorio, J. D., and A. Rivera-Alvarez. 2019. Performance analysis of parabolic trough collectors with double glass envelope. Renewable Energy 130:1092–107. doi:10.1016/j.renene.2018.06.024.
  • Ozsoy, A., and V. Corumlu. 2018. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications. Renewable Energy 122:26–34. doi:10.1016/j.renene.2018.01.031.
  • Potenza, M., M. Milanese, G. Colangelo, and A. de Risi. 2017. Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Applied Energy 203:560–70. doi:10.1016/j.apenergy.2017.06.075.
  • Rodríguez-Hidalgo, M. C., P. A. Rodríguez-Aumente, A. Lecuona, et al. 2011b. Flat plate thermal solar collector efficiency: Transient behavior under working conditions part II: Model application and design contributions. Applied Thermal Engineering. 31(14):2385–93. doi:10.1016/j.applthermaleng.2011.04.002.
  • Rodríguez-Hidalgo, M.C., P.A. Rodríguez-Aumente, A. Lecuona, G.L. Gutiérrez-Uruetaet, and R. Ventas. 2011. Flat plate thermal solar collector efficiency: Transient behavior under working conditions. Part I: Model description and experimental validation. Applied Thermal Engineering 31(14–15):2394-404. doi:10.1016/j.applthermaleng.2011.04.003
  • Saikia, S. S., S. Nath, and D. Bhanja. 2019. Effect of vacuum deterioration on thermal performance of coaxial evacuated tube solar collector considering single and two phase flow modelling: A numerical study. Solar Energy 177:127–43. doi:10.1016/j.solener.2018.10.089.
  • Sayegh, M. A., N. Khayata, and T. Nahhas. 2011. Design and experimental study for using PV/T collectors in the faculty of mechanical engineering university of Aleppo. Energy Procedia 6:21–28. doi:10.1016/j.egypro.2011.05.003.
  • Sharafeldin, M. A., G. Gróf, and O. Mahian. 2017. Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy 141:2436–44. doi:10.1016/j.energy.2017.11.068.
  • Teng, G. 2012. Heat transfer analysis and design optimization of flat plate solar collector. China: Tianjin University.
  • Wu, J., B. Zhang, and L. Wang. 2016. Optimum design and performance comparison of a redundantly actuated solar tracker and its nonredundant counterpart. Solar Energy 127:36–47. doi:10.1016/j.solener.2016.01.017.
  • Wu, J., X. Chen, and L. Wang. 2016. Design and dynamics of a novel solar tracker with parallel mechanism. IEEE-ASME Transactions on Mechatronics 21 (1):88–97.
  • Xiangqiang, K., L. Lin, L. Ying, and M. Dianqun. 2013. Simulation of thermal performance of flat-plate solar collectors. Acta Energiae Solaris Sinica 34 (8):1404–9
  • Yang, S. M., and W. S. Tao. 2015. Heat Transfer. China: Higher Education Press.
  • Yi, L. Q., and C. Qun. 2012. Application of entransy theory in the heat transfer optimization of flat-plate solar collectors. Chinese Science Bulletin 57 (2–3):299–306. doi:10.1007/s11434-011-4811-6.
  • Yılmaz, İ. H., and A. Mwesigye. 2018. Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Applied Energy 225:135–74. doi:10.1016/j.apenergy.2018.05.014.
  • Yongyi, C., and H. Caiqin. 2016. Effects of key parameters on thermal performance of solar flat plate collector. Building Energy Efficiency 11:28–33.
  • Zima, W. and P. Dziewa. 2010. Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes. Archives of thermodynamics 31 (2):45-62. doi:10.2478/v10173-010-0008-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.