1,656
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Particle Image Velocimetry (PIV) experiment of the buoyant flow field of a thermal chimney model designed for geothermal power plants

ORCID Icon, , &
Pages 951-960 | Received 22 May 2020, Accepted 28 Jul 2020, Published online: 06 Oct 2020

References

  • Abdallah, A., H. Yoshino, G. Tomonobu, E. Napoleon, M. Magdy, and M. Abdelsamei. 2014. Parametric investigation of solar chimney with new cooling tower integrated in a single room for New Assiut city, Egypt climate. International Journal of Energy and Environmental Engineering 5 (2):92. doi:10.1007/s40095-014-0092-6.
  • Chen, L., Y. Lijun, D. Xiaoze, and Y. Yongping. 2016. A novel layout of air-cooled condensers to improve thermo-flow performances. Applied Energy 165:244–59. doi:10.1016/j.apenergy.2015.11.062.
  • Churchill, S. W., and H. Humbert. 1975. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer 18 (9):1049–53. doi:10.1016/0017-9310(75)90222-7.
  • Grafsrønningen, S., and J. Atle. 2012a. Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers. International Journal of Heat and Mass Transfer 55 (21):5552–64. doi:10.1016/j.ijheatmasstransfer.2012.05.033.
  • Grafsrønningen, S., and J. Atle. 2012b. Simultaneous PIV/LIF measurements of a transitional buoyant plume above a horizontal cylinder. International Journal of Heat and Mass Transfer 55 (15):4195–206. doi:10.1016/j.ijheatmasstransfer.2012.03.060.
  • Grafsrønningen, S., J. Atle, and B. Anders. 2011. PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder. International Journal of Heat and Mass Transfer 54 (23):4975–87. doi:10.1016/j.ijheatmasstransfer.2011.07.011.
  • Kimura, S., and B. Adrian. 1983. Mechanism for transition to turbulence in buoyant plume flow. International Journal of Heat and Mass Transfer 26 (10):1515–32. doi:10.1016/S0017-9310(83)80051-9.
  • Kitamura, K., A. Mitsuishi, T. Suzuki, and F. Kimura. 2016. Fluid flow and heat transfer of natural convection induced around a vertical row of heated horizontal cylinders. International Journal of Heat and Mass Transfer 92:414–29. doi:10.1016/j.ijheatmasstransfer.2015.08.086.
  • Kuehner, J. P., A. M. Hamed, and J. D. Mitchell. 2015. Experimental investigation of the free convection velocity boundary layer and plume formation region for a heated horizontal cylinder. International Journal of Heat and Mass Transfer 82:78–97. doi:10.1016/j.ijheatmasstransfer.2014.10.055.
  • Kuehner, J. P., R. John, F. Andrew Tessier, A. M. Hamed, J. Franco, and M. Moiso. 2012. Velocity measurements in the free csonvection flow above a heated horizontal cylinder. International Journal of Heat and Mass Transfer 55 (17):4711–23. doi:10.1016/j.ijheatmasstransfer.2012.04.031.
  • Lal, S., S. C. Kaushik, and P. K. Bhargav. 2013. Solar chimney: A sustainable approach for ventilation and building apace conditioning. International Journal of Development and Sustainability 2 (1):277–97.
  • Li, W., G. Yu, D. Zagaglia, R. Green, and Z. Yu. 2020. CFD modelling of a thermal chimney for air-cooled condenser. Geothermics 88:101908. doi:10.1016/j.geothermics.2020.101908.
  • Lin, K. C., B. Yashraj, and Z. H. Cun-Y. 2017. “3D-CFD investigation into free convection flow above a heated horizontal cylinder. Comparisons with Experimental Data.” Applied Thermal Engineering 120:277–88. doi:10.1016/j.applthermaleng.2017.03.039.
  • Ma, H., H. Li, and R. Sham. 2019. Heat Transfer-fluid flow interaction in natural convection around heated cylinder and its thermal chimney effect. United Kingdom: Oxford. Vol. ISBN: 978-1-912532-05-6, IAPE 2019.
  • Morgan, V.T. 1975. The Overall Convective Heat Transfer from Smooth Circular Cylinders. Advances in Heat Transfer, 11:99–264 doi:10.1016/S0065-2717(08)70075-3
  • Noto, K. 1989. Swaying motion in thermal plume above a horizontal line heat source. Journal of Thermophysics and Heat Transfer 3 (4):428–34. doi:10.2514/3.28768.
  • Noto, K., T. Kenji, and N. Tsuyoshi. 1999. Spectra and critical grashof numbers for turbulent transition in a thermal plume. Journal of Thermophysics and Heat Transfer 13 (1):82–90. doi:10.2514/2.6404.
  • Park, D., and B. Francine. 2015. Application of a wall-solar chimney for passive ventilation of dwellings. Journal of Solar Energy Engineering 137:6. doi:10.1115/1.4031537.
  • Park, H., P. Jungsoo, and Y. J. Sung. 2019. Measurements of velocity and temperature fields in natural convective flows. International Journal of Heat and Mass Transfer 139:293–302. doi:10.1016/j.ijheatmasstransfer.2019.05.022.
  • Stafford, J., and E. Vanessa. 2014. Configurations for single-scale cylinder pairs in natural convection. International Journal of Thermal Sciences 84:62–74. doi:10.1016/j.ijthermalsci.2014.05.001.
  • Sun, Y., G. Zhiqiang, and H. Kamel. 2017. A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling. Renewable and Sustainable Energy Reviews 79:618–37. doi:10.1016/j.rser.2017.05.151.
  • Wenguang Li, Guopeng Yu, Zhibin Yu*, et al. 2020. CFD Modelling of a Thermal Chimney for Air-Cooled Condenser. Geothermics. 88, 101908
  • Zhai, X. Q., Z. P. Song, and R. Z. Wang. 2011. A review for the applications of solar chimneys in buildings. Renewable and Sustainable Energy Reviews 15 (8):3757–67. doi:10.1016/j.rser.2011.07.013.
  • Zhao, H., Y. Changqi, S. Licheng, Z. Kaibin, and F. Dan. 2015. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment. Applied Thermal Engineering 76:423–34. doi:10.1016/j.applthermaleng.2014.11.051.
  • Zou, Z., G. Zhiqiang, G. Hal, and L. Yuanshen. 2012. Solar enhanced natural draft dry cooling tower for geothermal power applications. Solar Energy 86 (9):2686–94. doi:10.1016/j.solener.2012.06.003.