268
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of a solar air heater with copper wool on the absorber plate

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 979-989 | Received 03 Mar 2020, Accepted 30 Aug 2020, Published online: 08 Oct 2020

References

  • Abuşka, M. 2018. Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Applied Thermal Engineering 131:115–24. doi:10.1016/j.applthermaleng.2017.11.129.
  • Arfaoui, N., S. Bouadila, and A. Guizani. 2017. A highly efficient solution of off-sunshine solar air heating using two packed beds of latent storage energy. Solar Energy 155:1243–53. doi:10.1016/j.solener.2017.07.075.
  • Belmontea, J. F., M. A. Izquierdo-Barrientosc, A. E. Molina, and J. A. Almendros-Ibanez. 2016. Air-based solar systems for building heating with PCM fluidized bed energy storage. Energy and Buildings 130:150–65. doi:10.1016/j.enbuild.2016.08.041.
  • Benli, H. 2013. Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renewable Energy 50:58–67. doi:10.1016/j.renene.2012.06.022.
  • Bouadila, S., M. Lazaar, S. Skouri, S. Kooli, and A. Farhat. 2014. Energy and exergy analysis of a new solar air heater with latent storage energy. International Journal of Hydrogen Energy 39:15266–74. doi:10.1016/j.ijhydene.2014.04.074.
  • Deniz, E., and S. Çınar. 2016. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification. Energy Conversion and Management 126:12–19. doi:10.1016/j.enconman.2016.07.064.
  • Devecioğlu, A. G., and V. Oruç. 2017. Experimental investigation of thermal performance of a new solar air collector with porous surface. Energy Procedia 113:251–58. doi:10.1016/j.egypro.2017.04.062.
  • Devecioğlu, A. G., V. Oruç, and Z. Tuncer. 2018. Energy and exergy analyses of a solar air heater with wire mesh-covered absorber plate. International Journal of Exergy 26 (1/2):3–20. doi:10.1504/IJEX.2018.092500.
  • Dijkman, T. J., and R. M. J. Benders. 2010. Comparison of renewable fuels based on their land use using energy densities. Renewable and Sustainable Energy Reviews 14 (9):3148–55. doi:10.1016/j.rser.2010.07.029.
  • El Khadraoui, A., S. Bouadila, S. Kooli, A. Guizani, and A. Farhat. 2016. Solar air heater with phase change material: An energy analysis and a comparative study. Applied Thermal Engineering 107:1057–64. doi:10.1016/j.applthermaleng.2016.07.004.
  • El-khawajah, M. F., L. B. Y. Aldabbagh, and F. Egelioglu. 2011. The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Solar Energy 85:1479–87. doi:10.1016/j.solener.2011.04.004.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, and B. M. Moharram. 2011. Thermal performance investigation of double pass-finned plate solar air heater. Applied Energy 88:1727–39. doi:10.1016/j.apenergy.2010.11.017.
  • Esen, H. 2008. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43:1046–54. doi:10.1016/j.buildenv.2007.02.016.
  • Ghiami, A., and S. Ghiami. 2018. Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering 133:797–808. doi:10.1016/j.applthermaleng.2017.11.111.
  • Hassan, H., and S. Abo-Elfadl. 2018. Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate. Renewable Energy 116:728–40. doi:10.1016/j.renene.2017.09.047.
  • Jia, B., F. Liu, and D. Wang. 2019. Experimental study on the performance of spiral solar air heater. Solar Energy 182:16–21. doi:10.1016/j.solener.2019.02.033.
  • Kabeel, A. E., M. S. Emad, and El-Said. 2014. A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: Part II. Experimental investigation. Desalination 341:50–60. doi:10.1016/j.desal.2014.02.035.
  • Kabeel, A. E., M. H. Hamed, Z. M. Omara, and A. W. Kandeal. 2018. Influence of fin height on the performance of a glazed and bladed entrance single-pass solar air heater. Solar Energy 162:410–19. doi:10.1016/j.solener.2018.01.037.
  • Kalaiarasi, G., R. Velraj, and M. V. Swami. 2016. Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage. Energy 111:609–19. doi:10.1016/j.energy.2016.05.110.
  • Karim, M. A., and M. N. A. Hawlader. 2004. Development of solar air collectors for drying applications. Energy Conversion and Management 45:329–44. doi:10.1016/S0196-8904(03)00158-4.
  • Karsli, S. 2007. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy 32 (10):1645–60. doi:10.1016/j.renene.2006.08.005.
  • Kavak Akpinar, E., and F. Koçyigit. 2010. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy 87:3438–50. doi:10.1016/j.apenergy.2010.05.017.
  • Kumar, A., and M. H. Kim. 2017. Solar air-heating system with packed-bed energy-storage systems. Renewable and Sustainable Energy Reviews 72:215–27. doi:10.1016/j.rser.2017.01.050.
  • Lemmon, E. W., M. L. Huber, and M. O. McLinden, 2013. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1. National Institute of Standards and Technology. Gaithersburg: Standard Reference Data Program.
  • Li, S., H. Wang, X. Meng, and X. Wei. 2017. Comparative study on the performance of a new solar air collector with different surface shapes. Applied Thermal Engineering 114:639–44. doi:10.1016/j.applthermaleng.2016.12.026.
  • Lund, P. D. 2009. Effects of energy policies on industry expansion in renewable energy. Renewable Energy 34:53–64. doi:10.1016/j.renene.2008.03.018.
  • Mahmood, A. J., L. B. Y. Aldabbagh, and F. Egelioglu. 2015. Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer. Energy Conversion and Management 89:599–607. doi:10.1016/j.enconman.2014.10.028.
  • Meteorological Service, Turkish State. 2020a. Accessed March 3, 2020. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=DIYARBAKIR
  • Meteorological Service, Turkish State, 2020b. Accessed March 3, 2020.. https://www.mgm.gov.tr/kurumici/radyasyon_iller.aspx?il=diyarbakir
  • Ministry of Energy and Natural Resources. 2020. Accessed March 3, 2020. https://www.enerji.gov.tr/tr-TR/Sayfalar/Gunes
  • Moradi, R., A. Kianifar, and S. Wongwises. 2017. Optimization of a solar air heater with phase change materials: Experimental and numerical study. Experimental Thermal and Fluid Science 89:41–49. doi:10.1016/j.expthermflusci.2017.07.011.
  • Moummi, N., S. Y. Ali, A. Moummi, and J. Y. Desmons. 2004. Energy analysis of a solar air collector with rows of fins. Renewable Energy 29 (13):2053–64. doi:10.1016/j.renene.2003.11.006.
  • Nowzari, R., N. Mirzaei, and L. B. Y. Aldabbagh. 2015. Finding the best configuration for a solar air heater by design and analysis of experiment. Energy Conversion and Management 100:131–37. doi:10.1016/j.enconman.2015.04.058.
  • Öztop, H. F., F. Bayrak, and A. Hepbasli. 2013. Energetic and exergetic aspects of solar air heating (solar collector) systems. Renewable and Sustainable Energy Reviews 21:59–83. doi:10.1016/j.rser.2012.12.019.
  • Pfister, H., T. Ralston, and S. W. Kim. 2016. A novel gridded solar air heater and an investigation of its conversion Efficiency. Solar Energy 136:560–70. doi:10.1016/j.solener.2016.07.020.
  • Prasad, S. B., J. S. Saini, and M. S. Krishna. 2009. Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material. Solar Energy 83 (5):773–83. doi:10.1016/j.solener.2008.11.011.
  • Rabha, D. K., and P. Muthukumar. 2017. Performance studies on a forced convection solar dryer integrated with a paraffin wax-based latent heat storage system. Solar Energy 149:214–26. doi:10.1016/j.solener.2017.04.012.
  • Rajaseenivasan, D. K., R. K. Shanmugam, V. M. Hareesh, and K. Srithar. 2016. Combined probation of bubble column humidification dehumidification desalination system using solar collectors. Energy 116:459–69. doi:10.1016/j.energy.2016.09.127.
  • Rajaseenivasan, T., S. Srinivasan, and K. Srithar. 2015. Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate. Energy 88:863–73. doi:10.1016/j.energy.2015.07.020.
  • Saxena, A., N. Agarwal, and G. Srivastava. 2013. Design and performance of a solar air heater with long term heat storage. International Journal of Heat and Mass Transfer 60:8–16. doi:10.1016/j.ijheatmasstransfer.2012.12.044.
  • Shams, S. M. N., M. Mc Keever, S. Mc Cormack, and B. Norton. 2016. Design and experiment of a new solar air heating collector. Energy 100:374–83. doi:10.1016/j.energy.2015.12.136.
  • Singh, S., and P. Dhiman. 2014. Thermal and thermo hydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined approach. Energy 72:344–59. doi:10.1016/j.energy.2014.05.044.
  • Solar energy potential atlas. 2020. Accessed March 3, 2020. http://www.yegm.gov.tr/MyCalculator/pages/21.aspx
  • Thakur, N. S., J. S. Saini, and S. C. Solanki. 2003. Heat transfer and friction factor correlations for packed bed solar air heater for a low porosity system. Solar Energy 74 (4):319–29. doi:10.1016/S0038-092X(03)00153-1.
  • Verma, P., and L. Varshney. 2015. Parametric investigation on thermo-hydraulic performance of wire screen matrix packed solar air heater. Sustainable Energy Technologies and Assessments 10:40–52. doi:10.1016/j.seta.2015.02.002.
  • Wazed, M. A., Y. Nukman, and M. T. Islam. 2010. Design and fabrication of a cost effective solar air heater for Bangladesh. Applied Energy 87:3030–36. doi:10.1016/j.apenergy.2010.02.014.
  • Yıldız, C., İ. Türk Toğrul, C. Sarsılmaz, and D. Pehlivan. 2002. Thermal efficiency of an air solar collector with extended absorption surface and increased. International Communications in Heat and Mass Transfer 29 (6):831–40. doi:10.1016/S0735-1933(02)00373-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.