386
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Overview of recent developments and the future of organic Rankine cycle applications for exhaust energy recovery in highway truck engines

ORCID Icon, , ORCID Icon, &
Pages 1005-1021 | Received 13 Jun 2020, Accepted 21 Aug 2020, Published online: 15 Sep 2020

References

  • Abbe, T. H., W. Tegethoff, P. Eilts, and J. Koehler. 2014. Prediction of dynamic Rankine cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles’ energy management. Energy Conversion and Management 78:438–51. ISSN 0196-8904. doi:10.1016/j.enconman.2013.10.074.
  • Amicabile, S., J.-I. Lee, and D. Kum. 2015. A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy-duty diesel engines. Applied Thermal Engineering 87:574–85. ISSN 1359-4311. doi:10.1016/j.applthermaleng.2015.04.034.
  • Amin, M. A., A. Pesyridis, K. Apostolos, and V. Esfahanian. 2017. Hybrid electric vehicle performance with organic Rankine cycle waste heat recovery system. Applied Sciences 7:437. doi:10.3390/app7050437.
  • Arsie, I., A. Cricchio, C. Pianese, V. Ricciardi, and M. De Cesare (2016). Modelling and optimization of organic Rankine cycle for waste heat recovery in automotive engines. SAE Technical Paper 2016-01-0207. doi:10.4271/2016-010207.
  • ATRI (American Transportation Research Institute). 2017. US greenhouse gas emissions in the transportation sector. Accessed April 16, 2020. http://truckingresearch.org/sustainable-trucking-and-the-environment/#_ftnref3
  • Bahrami, M., Hamidi, A. A., & Porkhial, S. (2013). Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle Stirling-ORC. International Journal of Energy and Environmental Engineering, 4(1), 12.
  • Boretti, A. 2012. Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine. Applied Thermal Engineering 36:73–77. ISSN 1359-4311. doi:10.1016/j.applthermaleng.2011.11.060.
  • Bufi, E. A., S. M. Camporeale, and P. Cinnella. 2017. Robust optimization of an organic Rankine cycle for heavy duty engine waste heat recovery. Energy Procedia 129:66–73. ISSN 1876-6102. doi:10.1016/j.egypro.2017.09.190.
  • Carstensen, A., A. Horn, J. Klammer, and J. Gockel. 2019. Waste heat recovery in passenger cars and trucks. MTZ Worldw 80:50–57. doi:10.1007/s38313-019-0014-3.
  • Chen, H. D., Y. Goswami, and E. K. Stefanakos. 2010. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews 14 (9):3059–67. ISSN 1364-0321. doi:10.1016/j.rser.2010.07.006.
  • Daccord, R., A. Darmedru, and J. Melis (2014). Oil-free axial piston expander for waste heat recovery. SAE Technical Paper 2014-01-0675. doi:10.4271/2014-01-0675.
  • DFE (Department for Transport). 2013. Fuel consumption. Accessed April 16, 2020. https://www.gov.uk/government/statistical-data-sets/energy-and-environment-data-tables-env.
  • Di Battista, D., M. Di Bartolomeo, C. Villante, and R. Cipollone. 2018. On the limiting factors of the waste heat recovery via ORC-based power units for on-the-road transportation sector. Energy Conversion and Management 155:68–77. ISSN 0196-8904. doi:10.1016/j.enconman.2017.10.091.
  • Domingues, A., H. Santos, and M. Costa. 2013. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle. Energy 49:71–85. doi:10.1016/j.energy.2012.11.001.
  • Endo, T., Kawajiri, S., Kojima, Y., Takahashi, K., Baba, T., Ibaraki, S., ... & Shinohara, M. (2007). Study on maximizing exergy in automotive engines. SAE Transactions, 347–356
  • Endo, T., S. Kawajiri, Y. Kojima, K. Takahashi, T. Baba, S. Ibaraki, and M. Shinohara. 2007. Study on maximizing exergy in automotive engines. SAE Technical Paper Series. doi:10.4271/2007-01-0257
  • Engineering ToolBox. 2003. Refrigerants - Environmental properties. Accessed June 1, 2020. https://www.engineeringtoolbox.com/refrigerants-properties-d_145.html.
  • Engineering ToolBox. 2005. Refrigerants - Physical properties. Accessed June 1, 2020. https://www.engineeringtoolbox.com/refrigerants-d_902.html.
  • Erbaş, M., and A. Biyikoglu. 2013. Design of low temperature organic Rankine cycle and turbine. 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, 1065–70, doi: 10.1109/PowerEng.2013.6635758.
  • ERTRAC. Future light and heavy duty ICE powertrain technologies, Ertrac, 1–75. Last modified April 5, 2016. Accessed April 16, 2020. https://www.ertrac.org/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=39&cntnt01returnid=90.
  • Fleet DNA Project Data. 2019. National renewable energy laboratory. Accessed May 5, 2020. www.nrel.gov/fleetdna
  • Freymann, R., J. Ringler, M. Seifert, and T. Horst. 2012. The second-generation turbo-steamer. MTZ Worldwide 73:18–23. doi:10.1365/s38313-012-0138-1.
  • Freymann, R., W. Strobl, and A. Obieglo. 2008. The turbo-steamer: A system introducing the principle of cogeneration in automotive applications. MTZ Worldwide 69:20–27. doi:10.1007/BF03226909.
  • Galindo, J., V. Dolz, L. Royo-Pascual, and A. Brizard. 2017. Dynamic modelling of an organic Rankine cycle to recover waste heat for transportation vehicles. Energy Procedia 129:192–99. ISSN 1876-6102. doi:10.1016/j.egypro.2017.09.111.
  • Greenwald, J. 2012. Oil sands up close. Accessed April 16, 2020. https://www.c2es.org/2012/11/oil-sands-up-close.
  • He, M., X. Zhang, K. Zeng, and K. Gao. 2011. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine. Energy 36 (12):6821–29. doi:10.1016/j.energy.2011.10.014.
  • Heywood, J. B. 2018. Internal combustion engine fundamentals. 2nd ed. NY/United States: McGraw Hill Education.
  • Hoang, A. T. 2018. Waste heat recovery from diesel engines based on organic Rankine cycle. Applied Energy 231:138–66. ISSN 0306-2619. doi:10.1016/j.apenergy.2018.09.022.
  • Horst, T. A., Rottengruber, H-S.., Seifert, M., & Ringler, J. (2013). Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems. Applied Energy, 105, 293–303 doi:10.1016/j.apenergy.2012.12.060
  • Hou, G., S. Bi, M. Lin, J. Zhang, and J. Xu. 2014. Minimum variance control of organic Rankine cycle-based waste heat recovery. Energy Conversion and Management 86:576–86. doi:10.1016/j.enconman.2014.06.004.
  • Jacopo, V., G. Manente, and A. Lazzaretto. 2015. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources. Applied Energy 156:727–46. ISSN 0306-2619. doi:10.1016/j.apenergy.2015.07.005.
  • Koeberlein, D. 2013. Cummins supertruck program technology and system level demonstration of highly efficient and clean, diesel powered class 8 trucks. Presentation at US Department of Energy, Merit Review, 2013. Accessed April 16, 2020. https://www.energy.gov/sites/prod/files/2014/03/f13/ace057_koeberlein_2013_o.pdf
  • Kunte, H., and J. Seume. 2013. Partial admission impulse turbine for automotive ORC application, SAE Technical Paper 2013-24-0092, 2013. doi:10.4271/2013-24-0092.
  • Lecompte, S., H. Huisseune, M. van den Broek, B. Vanslambrouck, and M. De Paepe. 2015. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews 47:448–61. ISSN 1364-0321. doi:10.1016/j.rser.2015.03.089.
  • Michos, C. N., S. Lion, I. Vlaskos, and R. Taccani. 2017. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Conversion and Management 132:347–60. ISSN 0196-8904. doi:10.1016/j.enconman.2016.11.025.
  • Mohamed, S., and M. S. Kumar. 2017. Review on exhaust heat recovery systems in diesel engine. International Journal of Advanced Engineering Research and Science 4 (11):91–97. doi:10.22161/ijaers.4.11.14.
  • Nelson, C. 2008. Exhaust energy recovery. In: Diesel Engine Efficiency and Emissions Research (DEER) Conference. Dearborn, MI. Accessed April 16, 2020. https://www.energy.gov/sites/prod/files/2014/03/f8/deer08_nelson.pdf
  • NFPA (National Fire Protection Association). 2012. Hazard rating information for common chemicals. Accessed June 1, 2020. https://www.northeastern.edu/ehs/ehs-programs/laboratory-safety/general-information/nfpa-hazard-rating-system/.
  • NFPA (National Fire Protection Association) 704. 2012. Standard system for the identification of the hazards of materials for emergency response. Last modified May 2016. Accessed June 1, 2020. https://www.grainger.com/content/qt-nfpa-704-304
  • Oomori, H., and S. Ogino. 1993. Waste heat recovery of passenger car using a combination of rankine bottoming cycle and evaporative engine cooling system. SAE Technical Paper 930880. doi:10.4271/930880.
  • Pei, G., J. Li, Y. Li, D. Wang, and J. Ji. 2011. Construction and dynamic test of a small-scale organic rankine cycle. Energy 36 (5):3215–23. ISSN 0360-5442. doi:10.1016/j.energy.2011.03.010.
  • Pili, R., A. Romagnoli, H. Spliethoff, and C. Wieland. 2017b. Economic feasibility of Organic Rankine Cycles (ORC) in different transportation sectors. Energy Procedia 105:1401–07. ISSN 1876-6102. doi:10.1016/j.egypro.2017.03.521.
  • Pili, R., J. D. Castro Pastrana, A. Romagnoli, H. Spliethoff, and C. Wieland. 2017a. Working fluid selection and optimal power-to weight ratio for ORC in long-haul trucks. Energy Procedia 129:754–61. ISSN 1876-6102. doi:10.1016/j.egypro.2017.09.116.
  • Rosebro, J. 2008. Honda researching advanced hybrid drive with rankine cycle co-generation. Accessed April 27, 2020. https://www.greencarcongress.com/2008/02/honda-researchi/comments/
  • Roy, J. P., M. K. Mishra, and A. Misra. 2011. Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions. Applied Energy 88 (9):2995–3004. ISSN 0306-2619. doi:10.1016/j.apenergy.2011.02.042.
  • Saleh, B., G. Koglbauer, M. Wendland, and J. Fischer. 2007. Working fluids for low-temperature organic Rankine cycles. Energy 32 (7):1210–21. ISSN 0360-5442. doi:10.1016/j.energy.2006.07.001.
  • Shi, R., T. He, J. Peng, Y. Zhang, and W. Zhuge. 2016. System design and control for waste heat recovery of automotive engines based on organic Rankine cycle. Energy 102:276–86. ISSN 0360-5442. doi:10.1016/j.energy.2016.02.065.
  • Song, J., and C.-W. Gu. 2015. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery. Energy Conversion and Management 105:995–1005. ISSN 0196-8904. doi:10.1016/j.enconman.2015.08.074.
  • Subramanian, S. N. 2014. Vehicle technologies program review, Eaton Corporation. Accessed April 26, 2020. https://www.energy.gov/sites/prod/files/2014/07/f17/ace088_subramanian_2014_o.pdf
  • Surwase, P. B., and H. S. Farkade. 2016. Waste heat recovery from the exhaust of a diesel engine using parallel flow shell and tube heat exchanger. International Journal of Mechanical and Production Engineering (IJMPE) 4 (6):150–53.
  • Teng, H. 2010. Waste heat recovery concept to reduce fuel consumption and heat rejection from a diesel engine. SAE International Journal of Commercial Vehicles 3:60–68. doi:10.4271/2010-01-1928.
  • Teng, H., G. Regner, and C. Cowland. 2007. Waste heat recovery of heavy-duty diesel engines by organic rankine cycle Part I: Hybrid energy system of diesel and Rankine engines. SAE Technical Paper 2007-01-0537. doi:10.4271/2007-01-0537.
  • Thaddaeus, J., A. Pesiridis, and A. Karvountzis-Kontakiotis. 2016. Design of variable geometry waste heat recovery turbine for high efficiency internal combustion engine. International Journal of Scientific Engineering and Research 7:1001–17.
  • Thombare, D., and J. Jadhav. 2013. Review on exhaust gas heat recovery for I.C. engine. International Journal of Engineering and Innovative Technology (IJEIT) 2:93–100.
  • Tian, H., G. Shu, H. Wei, X. Liang, and L. Liu. 2012. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 47 (1):125–36. ISSN 0360-5442. doi:10.1016/j.energy.2012.09.021.
  • Töpfer, K. 2006. Energy efficiency guide for industry in Asia. Accessed May 3, 2020. https://wedocs.unep.org/bitstream/handle/20.500.11822/9123/Energy%20Efficiency%20Guide%20for%20Industry%20in%20Asia2006634.pdf?sequence=3&isAllowed=y
  • Vaja, I., and A. Gambarotta. 2010. Internal combustion engine (ICE) bottoming with Organic Rankine Cycles (ORCs). Energy 35 (2):1084–93. ISSN 0360-5442. doi:10.1016/j.energy.2009.06.001.
  • Vijay, V. S., B. K. Aravinda, S. Shetty, N. V. Gurudatta, and R. Sequeira. 2016. Design and fabrication of heat exchanger for waste heat recovery from exhaust gas of diesel engine. Journal of Mechanical Engineering and Automation 6 (5A):131–37. doi:10.5923/c.jmea.201601.25.
  • Wang, X., G. Shu, H. Tian, P. Liu, X. Li, and D. Jing. 2017. Dynamic response performance comparison of ranking cycles with different working fluids for waste heat recovery of internal combustion engines. Energy Procedia 105:1600–05. ISSN 1876-6102. doi:10.1016/j.egypro.2017.03.512.
  • White, M. 2015. The design and analysis of radial inflow turbines implemented within low temperature organic Rankine cycles. PhD diss., City University London.
  • Wolfgang, L., P. Colonna, and R. Almbauer. 2013. Assessment of waste heat recovery from a heavy-duty truck engine by means of an ORC turbogenerator. Journal of Engineering for Gas Turbines and Power 135:042313. doi:10.1115/1.4023123.
  • Yang, F., X. Dong, H. Zhang, Z. Wang, K. Yang, J. Zhang, E. Wang, H. Liu, and G. Zhao. 2014. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions. Energy Conversion and Management 80:243–55. ISSN 0196-8904. doi:10.1016/j.enconman.2014.01.036.
  • Yang, J., B. Yu, B. Lu, & J. Chen, (2018). Thermo-economic Review of Micro-scale Organic Rankine Cycle Integrated into Vehicle Engines for Waste Heat Recovery. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 35(4), 337.
  • Yu, G., G. Shu, H. Tian, H. Wei, and L. Liu. 2013. Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy 51:281–90. ISSN 0360-5442. doi:10.1016/j.energy.2012.10.054.
  • Yue, C., and P. Wang. 2019. Thermal analysis on vehicle energy supplying system based on waste heat recovery ORC. Energy Procedia 158:5587–95. ISSN 1876-6102. doi:10.1016/j.egypro.2019.01.582.
  • Zhang, X., K. Zeng, B. A. I. Sujuan, Y. Zhang, and M. He. 2011. Exhaust recovery of vehicle gasoline engine based on organic Rankine cycle. SAE 2011 World Congress and Exhibition. doi: 10.4271/2011-01-1339.
  • Zhao, M., G. Shu, H. Tian, F. Yan, G. Huang, and C. Hu. 2017. The investigation of the recuperative organic Rankine cycle models for the waste heat recovery on vehicles. Energy Procedia 129:732–39. ISSN 1876-6102. doi:10.1016/j.egypro.2017.09.106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.