386
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Sb2S3@SnO2 hetero-nanocomposite as high-performance anode material for sodium-ion battery

, , , &
Pages 1044-1050 | Received 13 Aug 2020, Accepted 06 Sep 2020, Published online: 24 Sep 2020

References

  • Ao, X., J. Jiang, Y. Ruan, Z. Li, Y. Zhang, J. Sun, and C. Wang. 2017. Honeycomb-inspired design of ultrafine SnO 2 @C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. Journal of Power Sources 359:340–48. doi:10.1016/j.jpowsour.2017.05.064.
  • Barr, M. K. S., L. Assaud, Y. Wu, C. Laffon, P. Parent, J. Bachmann, and L. Santinacci. 2015. Engineering a three-dimensional, photoelectrochemically active p-NiO / i-Sb 2 S 3 junction by atomic layer deposition. Electrochimica acta 179 (10):504–11. doi:10.1016/j.electacta.2015.07.016.
  • Chen, X., X. Q. Zhang, H. R. Li, and Q. Zhang. 2019. Cation−solvent, cation−anion, and solvent−solvent interactions with electrolyte solvation in lithium batteries. Batteries & Supercaps 2 (2):128–31. doi:10.1002/batt.201800118.
  • Choi, I. Y., C. Jo, W. G. Lim, J. C. Han, B. G. Chae, C. G. Park, J. Lee, and J. K. Kim. 2019. Amorphous tin oxide nanohelix structure based electrode for highly reversible na-ion batteries. ACS Nano 13 (6):6513–21. doi:10.1021/acsnano.8b09773.
  • Dong, S., C. Li, X. Ge, Z. Li, X. Miao, and L. Yin. 2017. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11 (6):6474–82. doi:10.1021/acsnano.7b03321.
  • Dong, Y., M. Hu, Z. Zhang, J. A. Zapien, X. Wang, J.-M. Lee, and W. Zhang. 2019. Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Applied Nano Materials 2 (3):1457–65. doi:10.1021/acsanm.8b02335.
  • Fan, T.-E., and H.-F. Xie. 2019. Sb2S3-rGO for high-performance sodium-ion battery anodes on Al and Cu foil current collector. Journal of Alloys and Compounds 775:549–53. doi:10.1016/j.jallcom.2018.10.103.
  • Fang, Y., L. Xiao, Z. Chen, X. Ai, Y. Cao, and H. X. Yang. 2018. Recent advances in sodium-ion battery materials . Electrochemical Energy Reviews 1 (3):294–323. doi:10.1007/s41918-018-0008-x.
  • Fu, L., C. Shang, G. Li, L. Hu, X. Zhang, L. Huang, X. Wang, and G. Zhou. 2019. Lithium pre-cycling induced fast kinetics of commercial Sb2S3 anode for advanced sodium storage. Energy & Environmental Materials 2 (3):209–15. doi:10.1002/eem2.12037.
  • Hameed, A. S., M. V. Reddy, J. L. T. Chen, B. V. R. Chowdari, and J. J. Vittal. 2016. RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries. ACS sustainable chemistry & engineering. 4 (5):2479–86. doi:10.1021/acssuschemeng.5b01211.
  • Hou, H., M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, and X. Ji. 2015. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces 7 (34):19362–69. doi:10.1021/acsami.5b05509.
  • Hwang, S. M., J. Kim, Y. Kim, and Y. Kim. 2016. Na-ion storage performance of amorphous Sb2S3nanoparticles: Anode for Na-ion batteries and seawater flow batteries. Journal of Materials Chemical A 4 (46):17946–51. doi:10.1039/c6ta07838a.
  • Li, J., D. Yan, X. Zhang, S. Hou, D. Li, T. Lu, Y. Yao, and L. Pan. 2017. In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochimica acta 228:436–46. doi:10.1016/j.electacta.2017.01.114.
  • Pan, J., Z. Zuo, J. Deng, Q. Yao, Z. Wang, and H. Zhou. 2018. Sb2S3 single crystal nanowires with comparable electrochemical properties as an anode for sodium ion batteries. Surfaces and Interfaces 10:170–75. doi:10.1016/j.surfin.2017.10.010.
  • Reddy, M., G. Subba Rao, and B. Chowdari. 2013. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews 113 (7):5364–457. doi:10.1021/cr3001884.
  • Slater, M. D., D. Kim, E. Lee, and C. S. Johnson. 2013. Sodium-ion batteries. Advanced Functional Materials 23 (8):947–58. doi:10.1002/adfm.201200691.
  • Wang, M., X. Wang, Z. Yao, W. Tang, X. Xia, C. Gu, and J. Tu. 2019. SnO2 nanoflake arrays coated with polypyrrole on carbon cloth as flexible anodes for sodium-ion batteries. ACS Applied Materials & Interfaces 11 (27):24198–204. doi:10.1021/acsami.9b08378.
  • Wang, T., D. Su, D. Shanmukaraj, T. F. Rojo, A. Michel, and G. X. Wang. 2018. Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms. Electrochemical Energy Reviews 1 (2):200–37. doi:10.1007/s41918-018-0009-9.
  • Wu, Y., P. Nie, H. Dou, J. Jiang, Y. Zhu, and X. Zhang. 2018. Graphene scrolls coated Sb2S3 nanowires as anodes for sodium and lithium ion batteries. Nano-Structures & Nano-Objects 15:197–204. doi:10.1016/j.nanoso.2017.09.015.
  • Xiong, X., G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J. H. Wang, and M. Liu. 2016. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10 (12):10953–59. doi:10.1021/acsnano.6b05653.
  • Yu, D. Y., P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, and O. Lev. 2013. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nature Communications 4:2922–28. doi:10.1038/ncomms3922.
  • Zhang, Z., J. Zhao, M. Xu, H. Wang, Y. Gong, and J. Xu. 2018. Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Nanotechnology 29 (33):335401–07. doi:10.1088/1361-6528/aac645.
  • Zhao, X., M. Luo, W. Zhao, R. Xu, Y. Liu, and H. Shen. 2018. SnO2 nanosheets anchored on a 3D, bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces 10 (44):38006–14. doi:10.1021/acsami.8b11672.
  • Zhao, Y., and A. Manthiram. 2015. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries. Chemical Communications 51 (67):13205–08. doi:10.1039/c5cc03825a.
  • Zheng, Y., T. Zhou, C. Zhang, J. Mao, H. Liu, and Z. Guo. 2016. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angewandte Chemie International Edition 55 (10):3408–13. doi:10.1002/anie.201510978.
  • Zhu, Y., P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, and X. Zhang. 2015. High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nanoscale 7 (7)::3309–3315. doi:10.1039/c4nr05242k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.