597
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design and Economic Evaluation of Low Voltage DC Microgrid based on Hydrogen Storage

ORCID Icon, &
Pages 66-79 | Received 03 Mar 2020, Accepted 29 Sep 2020, Published online: 18 Oct 2020

References

  • Ahmed, K. S., and S. P. Karthikeyan. 2018. Modified penalized quoted cost method for transmission loss allocation including reactive power demand in deregulated electricity market. Sustainable Energy, Grids and Networks 16:370–79. doi:10.1016/j.segan.2018.10.004.
  • Azizi, A., S. Peyghami, H. Mokhtari, and F. Blaabjerg. 2019. Autonomous and decentralized load sharing and energy management approach for DC microgrids. Electric Power Systems Research 177:1–11. doi:10.1016/j.epsr.2019.106009.
  • Bahramara, S., M. P. Moghaddam, and M. R. Haghifam. 2016. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews 62:609–20. doi:10.1016/j.rser.2016.05.039.
  • Belkhiria, S., C. Briki, M. H. Dhao, N. Sdiri, A. Jemni, F. Askri, and S. B. Nasrallah. 2017. Experimental study of metal-hydrogen reactor behavior during desorption under heating by electromagnetic induction. International Journal of Hydrogen Energy 42:16645–56. doi:10.1016/j.ijhydene.2017.04.295.
  • Calzadilla, T. C., A. M. Macarulla, O. K. Esteban, and C. E. Borges. 2018. Analysis and assessment of an off-grid services building through the usage of a DC photovoltaic microgrid. Sustainable Cities and Society 38:405–19. doi:10.1016/j.scs.2018.01.010.
  • Colbe, J. B. V., J. R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D. M. Grant, M. N. Guzik, I. Jacob, et al. 2019. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International Journal of Hydrogen Energy 44:7780–808. doi:10.1016/j.ijhydene.2019.01.104.
  • Cornea, O., G. Andreescu, N. Muntean, and D. Hulea. 2017. Bidirectional power flow control in a DC microgrid through a switched-capacitor cell hybrid DC–DC converter. IEEE Transactions on Industrial Electronics 64:3012–22. doi:10.1109/TIE.2016.2631527.
  • Dastgeer, F., and H. E. Gelani. 2017. A comparative analysis of system efficiency for AC and DC residential power distribution paradigms. Energy and Buildings 138:648–54. doi:10.1016/j.enbuild.2016.12.077.
  • Elsayed, A. T., A. A. Mohamed, and O. A. Mohammed. 2015. DC microgrids and distribution systems: An overview. Electric Power Systems Research 119:407–17. doi:10.1016/j.epsr.2014.10.017.
  • Fallahi, Z., K. Plewe, and A. D. Smith. 2018. Energy-related emissions from commercial buildings: Comparing methods for quantifying temporal indirect emissions associated with electricity purchases. Sustainable Energy Technologies and Assessments 30:150–63. doi:10.1016/j.seta.2018.09.004.
  • Fathi, A. E., and A. Outzourhit. 2018. Technico-economic assessment of a lead-acid battery bank for standalone photovoltaic power plant. Journal of Energy Storage 19:185–91. doi:10.1016/j.est.2018.07.019.
  • Gerber, D. L., R. Liou, and R. Brown. 2019. Energy-saving opportunities of direct-DC loads in buildings. Applied Energy 248:274–87. doi:10.1016/j.apenergy.2019.04.089.
  • Justo, J. J., F. Mwasilu, J. Lee, and J. W. Jung. 2013. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews 24:387–405. doi:10.1016/j.rser.2013.03.067.
  • Karavas, C. S., K. G. Arvanitis, G. Kyriakarakos, D. D. Piromalis, and G. Papadakis. 2018. A novel autonomous PV powered desalination system based on a DC microgrid concept incorporating short-term energy storage. Solar Energy 159:947–61. doi:10.1016/j.solener.2017.11.057.
  • Kitson, J., S. J. Williamson, P. W. Harper, C. A. McMahon, G. Rosenberg, M. J. Tierney, K. K. Bell, and B. Gautam. 2018. Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities. Energy 160:142–53. doi:10.1016/j.energy.2018.06.219.
  • Kumar, K., M. Alam, D. Rakshit, and V. Dutta. 2019. Operational characteristics of metal hydride energy storage system in microgrid. Energy Conversion and Management 187:176–90. doi:10.1016/j.enconman.2019.03.019.
  • Kumar, K., M. Alam, S. Verma, and V. Dutta. 2020. Analysis of metal hydride storage on the basis of thermophysical properties and its application in microgrid. Energy Conversion and Management 222:113217. doi:10.1016/j.enconman.2020.113217.
  • Kumar, K., J. Srivastava, D. Rakshit, and V. Dutta. 2017. Performance characterization of zero carbon emission microgrid in subtropical climate based on experimental energy and exergy analyses. Energy Conversion and Management 154:224–43. doi:10.1016/j.enconman.2017.10.044.
  • Kwon, M., and S. Choi. 2018. Control scheme for autonomous and smooth mode switching of bidirectional DC–DC converters in a DC microgrid. IEEE Transactions on Power Electronics 33:7094–104. doi:10.1109/TPEL.2017.2753845.
  • Li, W., Q. Jiang, Y. Mei, C. Li, Y. Deng, and X. He. 2015. Modular multilevel DC/DC converters with phase-shift control scheme for high-voltage DC-based systems. IEEE Transactions on Power Electronics 30:99–107. doi:10.1109/TPEL.2014.2301722.
  • Li, X., L. Guo, S. Zhang, C. Wang, Y. W. Li, A. Chen, and Y. Feng. 2018. Observer-based DC voltage droop and current feed-forward control of a DC microgrid. IEEE Transactions on Smart Grid 9:5207–16. doi:10.1109/TSG.2017.2684178.
  • Lotfi, H., and A. Khodaei. 2017. Hybrid AC/DC microgrid planning. Energy 118:37–46. doi:10.1016/j.energy.2016.12.015.
  • Lu, S., L. Wang, T. Lo, and A. V. Prokhorov. 2015. Integration of wind power and wave power generation systems using a DC microgrid. IEEE Transactions on Industry Applications 51:2753–61. doi:10.1109/TIA.2014.2367102.
  • Mardani, M. M., M. H. Khooban, A. Masoudian, and T. Dragicevic. 2019. Model predictive control of DC–DC converters to mitigate the effects of pulsed power loads in naval DC microgrids. IEEE Transactions on Industrial Electronics 66:5676–85. doi:10.1109/TIE.2018.2877191.
  • Nasirian, V., S. Moayedi, A. Davoudi, and F. L. Lewis. 2015. Distributed cooperative control of DC microgrids. IEEE Transactions on Power Electronics 30:2288–303. doi:10.1109/TPEL.2014.2324579.
  • Nejabatkhah, F., and Y. W. Li. 2015. Overview of power management strategies of hybrid AC/DC microgrid. IEEE Transactions on Power Electronics 30:7072–89. doi:10.1109/TPEL.2014.2384999.
  • Noroozian, R., M. Abedi, G. B. Gharehpetian, and S. H. Hosseini. 2010. Distributed resources and DC distribution system combination for high power quality. International Journal of Electrical Power & Energy Systems 32:769–81. doi:10.1016/j.ijepes.2010.01.013.
  • Patrao, I., E. Figueres, G. G. Garcera, and R. G. Medina. 2015. Microgrid architectures for low voltage distributed generation. Renewable and Sustainable Energy Reviews 43:415–24. doi:10.1016/j.rser.2014.11.054.
  • Phurailatpam, C., B. S. Rajpurohit, and L. Wang. 2018. Planning and optimization of autonomous DC microgrids for rural and urban applications in India. Renewable and Sustainable Energy Reviews 82:194–204. doi:10.1016/j.rser.2017.09.022.
  • Sen, R., and S. C. Bhattacharyya. 2014. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy 62:388–98. doi:10.1016/j.renene.2013.07.028.
  • Shahzad, M. K., A. Zahid, T. U. Rashid, M. A. Rehan, M. Ali, and M. Ahmad. 2017. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy 106:264–73. doi:10.1016/j.renene.2017.01.033.
  • Sinsel, S. R., R. L. Riemke, and V. H. Hoffmann. 2020. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy 145:2271–85. doi:10.1016/j.renene.2019.06.147.
  • Tribioli, L., and R. Cozzolino. 2019. Techno-economic analysis of a stand-alone microgrid for a commercial building in eight different climate zones. Energy Conversion and Management 179:58–71. doi:10.1016/j.enconman.2018.10.061.
  • Yin, C., H. Wu, F. Locment, and M. Sechilariu. 2017. Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management 132:14–27. doi:10.1016/j.enconman.2016.11.018.
  • Yoldas, A., A. Onen, S. M. Muyeen, A. V. Vasilakos, and I. Alan. 2017. Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and sustainable energy reviews 72:205–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.