564
Views
13
CrossRef citations to date
0
Altmetric
Research Article

A Novel MOGA approach for power saving strategy and optimization of maximum temperature and maximum pressure for liquid cooling type battery thermal management system

, ORCID Icon, , , &
Pages 80-89 | Received 03 May 2020, Accepted 29 Sep 2020, Published online: 14 Dec 2020

References

  • Aswin Karthik, C., P. Kalita, X. Cui, and X. Peng. 2020. Thermal management for prevention of failures of lithium ion battery packs in electric vehicles: A review and critical future aspects. Energy Storage 2 (3):e137. doi:10.1002/est2.137.
  • Chen, K., Y. Chen, Y. She, M. Song, S. Wang, and L. Chen. 2020a. Construction of effective symmetrical air-cooled system for battery thermal management. Applied Thermal Engineering 166:114679. doi:10.1016/j.applthermaleng.2019.114679.
  • Chen, K., Y. Chen, M. Song, and S. Wang. 2020b. Multi-parameter structure design of parallel mini-channel cold plate for battery thermal management. International Journal of Energy Research 44 (6):4321–34. doi:10.1002/er.5200.
  • Chen, S., N. Bao, L. Gao, X. Peng, and A. Garg. 2020c. An experimental investigation of liquid cooling scheduling for a battery module. International Journal of Energy Research 44 (4):3020–32. doi:10.1002/er.5132.
  • Chen, S., X. Peng, N. Bao, and A. Garg. 2019. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module. Applied Thermal Engineering 156:324–39. doi:10.1016/j.applthermaleng.2019.04.089.
  • Choi, Y. S., and D. M. Kang. 2014. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles. Journal of Power Sources 270:273–80. doi:10.1016/j.jpowsour.2014.07.120.
  • Huo, Y., Z. Rao, X. Liu, and J. Zhao. 2015. Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion and Management 89:387–95. doi:10.1016/j.enconman.2014.10.015.
  • Jin, L. W., P. S. Lee, X. X. Kong, Y. Fan, and S. K. Chou. 2014. Ultra-thin minichannel LCP for EV battery thermal management. Applied Energy 113:1786–94. doi:10.1016/j.apenergy.2013.07.013.
  • Lan, C., J. Xu, Y. Qiao, and Y. Ma. 2016. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Applied Thermal Engineering 101:284–92. doi:10.1016/j.applthermaleng.2016.02.070.
  • Li, W., X. Peng, M. Xiao, A. Garg, and L. Gao. 2019. Multi-objective design optimization for mini-channel cooling battery thermal management system in an electric vehicle. International Journal of Energy Research 43 (8):3668–80. doi:10.1002/er.4518.
  • Li, W., M. Xiao, A. Garg, and L. Gao. 2020. A new approach to solve uncertain multidisciplinary design optimization based on conditional value at risk. IEEE Transactions on Automation Science and Engineering 99:1–13. doi:10.1109/tase.2020.2999380.
  • Liu, H., Z. Wei, W. He, and J. Zhao. 2017. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management 150:304–30. doi:10.1016/j.enconman.2017.08.016.
  • Liu, Z., Y. Wang, J. Zhang, and Z. Liu. 2014. Shortcut computation for the thermal management of a large air-cooled battery pack. Applied Thermal Engineering 66:445–52. doi:10.1016/j.applthermaleng.2014.02.040.
  • Mann, G. W., and S. Eckels. 2019. Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II. International Journal of Heat and Mass Transfer 132:1250–61. doi:10.1016/j.ijheatmasstransfer.2018.12.078.
  • Severino, B., F. Gana, R. Palma-Behnke, P. A. E. Evez, W. R. Calderón-Munoz, M. E. Orchard, J. Reyes, and M. C. Es. 2014. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms. Journal of Power Sources 267:288–99. doi:10.1016/j.jpowsour.2014.05.088.
  • Shang, Z., H. Qi, X. Liu, C. Ouyang, and Y. Wang. 2019. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. International Journal of Heat and Mass Transfer 130:33–41. doi:10.1016/j.ijheatmasstransfer.2018.10.074.
  • Shaosen, S., D. Chen, K. Srinivasan, B. Y. Chen, X. Meijuan, A. Garg, L. Gao, and J. Sandoval. 2019. Experimental and artificial intelligence for determination of stable criteria in cyclic voltammetric process of medicinal herbs for biofuel cells. International Journal of Energy Research 43:5983–91. doi:10.1002/er.4634.
  • Tong, W., K. Somasundaram, E. Birgersson, A. S. Mujumdar, and C. Yap. 2016. Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module. Applied Thermal Engineering 99:672–82. doi:10.1016/j.applthermaleng.2016.01.050.
  • Wang, T., K. J. Tseng, and J. Zhao. 2015. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Applied Thermal Engineering 90:521–29. doi:10.1016/j.applthermaleng.2015.07.033.
  • Wang, T., K. J. Tseng, J. Zhao, and Z. Wei. 2014. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy 134:229–38. doi:10.1016/j.apenergy.2014.08.013.
  • Wang, X., M. Li, Y. Liu, W. Sun, X. Song, and J. Zhang. 2017. Surrogate based multidisciplinary design optimization of lithium-ion battery thermal management system in electric vehicles. Structural and Multidisciplinary Optimization 56 (6):1555–70. doi:10.1007/s00158-017-1733-1.
  • Yang, N., X. Zhang, G. Li, and D. Hua. 2015. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Applied Thermal Engineering 80:55–65. doi:10.1016/j.applthermaleng.2015.01.049.
  • Ye, B., M. R. H. Rubel, and H. Li. 2019. Design and optimization of cooling plate for battery module of an electric vehicle. Applied Sciences 9 (4):754. doi:10.3390/app9040754.
  • Zhang, J., H. Kang, K. Wu, J. Li, and Y. Wang. 2018. The impact of enclosure and boundary conditions with a wedge-shaped path and air cooling for battery thermal management in electric vehicles. International Journal of Energy Research 42 (13):4054–69. doi:10.1002/er.4122.
  • Zhang, Y. P., X. L. Yu, Q. K. Feng, and R. T. Zhang. 2009. Thermal performance study of integrated cold plate with power module. Applied Thermal Engineering 29 (17–18):3568–73. doi:10.1016/j.applthermaleng.2009.06.013.
  • Zhao, J., Z. Rao, and Y. Li. 2015. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management 103:157–65. doi:10.1016/j.enconman.2015.06.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.