212
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synergistic effect of additives and blend on sulfur retention, NO release and ash fusibility during combustion of biomass briquettes

, , , , , , , & show all
Pages 187-202 | Received 07 Aug 2020, Accepted 29 Oct 2020, Published online: 07 Dec 2020

References

  • Brown, R. C. 2019. Thermochemical processing of biomass: Conversion into fuels, chemicals and power. Hoboken, NJ: John Wiley & Sons.
  • Cheng, J. 2017. Biomass to renewable energy processes. Boca Raton, FL: CRC press.
  • El-Seesy, A.I., Hassan, H., Ibraheem, L., He, Z. and Soudagar, Manzoore Elahi M.., 2020. Combustion, emission, and phase stability features of a diesel engine fueled by Jatropha/ethanol blends and n-butanol as co-solvent. International Journal of Green Energy, 17(12):793–804 doi:10.1080/15435075.2020.1798770
  • Ghimire, A., E. Trably, L. Frunzo, F. Pirozzi, P. N. L. Lens, G. Esposito, E. A. Cazier, and R. Escudié. 2018. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology 248:180–86. doi:10.1016/j.biortech.2017.07.062.
  • Han, K., J. Gao, and J. Qi. 2019. The study of sulphur retention characteristics of biomass briquettes during combustion. Energy 186:115788. doi:10.1016/j.energy.2019.07.118.
  • Krzywański, J., R. Rajczyk, and W. Nowak. 2014. Model research of gas emissions from lignite and biomass co-combustion in a large scale CFB boiler. Chemical and Process Engineering 35 (2):217–31. doi:10.2478/cpe-2014-0017.
  • Krzywanski, J., T. Czakiert, A. Blaszczuk, R. Rajczyk, W. Muskala, and W. Nowak. 2015. A generalized model of SO2 emissions from large-and small-scale CFB boilers by artificial neural network approach Part 2. SO2 emissions from large-and pilot-scale CFB boilers in O2/N2, O2/CO2 and O2/RFG combustion atmospheres. Fuel Processing Technology 139:73–85. doi:10.1016/j.fuproc.2015.08.009.
  • Kydes, A. S. 2007. Impacts of a renewable portfolio generation standard on US energy markets. Energy Policy 35 (2):809–14. doi:10.1016/j.enpol.2006.03.002.
  • Li, Z., W. Zhao, R. Li, Z. Wang, Y. Li, and G. Zhao. 2009. Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler. Bioresource Technology 100 (7):2278–83. doi:10.1016/j.biortech.2008.11.005.
  • Liu, H., S. Zhang, X. Song, N. Hu, M. Sun, and M. Chang. 2020. Advance in the research on slag-resistant biomass briquette preparation. Clean Coal Technology 26:22–31.
  • Ma, H., -W.-W. Liu, X. Chen, Y.-J. Wu, and Z.-L. Yu. 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology 100 (3):1279–84. doi:10.1016/j.biortech.2008.08.045.
  • Medium and long term development plan for renewable energy resources. 2007. China: National Development and Reform Commission.
  • Niu, Y. and Tan, H., 2016. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progress in Energy and Combustion Science, 52:1–61
  • Pellegrini, A. F. A., R. M. Pringle, N. Govender, and L. O. Hedin. 2017. Woody plant biomass and carbon exchange depend on elephant-fire interactions across a productivity gradient in African savanna. Journal of Ecology 105 (1):111–21. doi:10.1111/1365-2745.12668.
  • Pradhan, P., S. M. Mahajani, and A. Arora. 2018. Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology 181:215–32. doi:10.1016/j.fuproc.2018.09.021.
  • Qi, J., H. Li, K. Han, Q. Zuo, J. Gao, Q. Wang, and C. Lu. 2016. Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass. Energy 102:244–51. doi:10.1016/j.energy.2016.02.090.
  • Qi, J., K. Han, Q. Wang, and J. Gao. 2017a. Carbonization of biomass: Effect of additives on alkali metals residue, SO2 and NO emission of chars during combustion. Energy 130:560–69. doi:10.1016/j.energy.2017.04.109.
  • Qi, J., T. Reddell, K. Qin, K. Hooman, and I. H. J. Jahn. 2017b. Super- critical CO2 radial turbine design performance as a function of turbine size parameters. Journal of Turbomachinery 139 (8):081008. doi:10.1115/1.4035920.
  • Sander, B., Henriksen, N., Larsen, O.H., Skriver, A., Ramsgaard-Nielsen, C., Jensen, J.N., Stærkind, K., Livbjerg, H., Thellefsen, M., Dam-Johansen, K. and Frandsen, F., 2000. Emissions, corrosion and alkali chemistry in straw-fired combined heat and power plants. In 1st World Conference and Exhibition on Biomass for Energy and Industry. Sevilla, Spain
  • Sharma, A. and Murugan, S., 2016. Experimental evaluation of combustion parameters of a DI diesel engine operating with biodiesel blend at varying injection timings. In Proceedings of the first international conference on recent advances in bioenergy research (pp. 169–177). Springer, New Delhi, India
  • Sharma, A., and S. Murugan. 2014. Influence of fuel injection timing on the performance and emission characteristics of a diesel engine fueled with jatropha methyl ester-tyre pyrolysis oil blend. In Applied mechanics and materials, eds. K.R. Balasubramanian, S.P. Sivapirakasam and R. Anand. 592:1627–31. Trans Tech Publ.
  • Sharma, A., and S. Murugan. 2017. Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel. Energy 127:236–46. doi:10.1016/j.energy.2017.03.114.
  • Shi, Y., N. Ziadi, C. Hamel, S. Bittman, D. Hunt, R. Lalande, and J. Shang. 2018. Soil microbial biomass, activity, and community composition as affected by dairy manure slurry applications in grassland production. Applied Soil Ecology 125:97–107. doi:10.1016/j.apsoil.2017.12.022.
  • Sun, J., B. Zhao, and Y. Su. 2019. Advanced control of NO emission from algal biomass combustion using loaded iron-based additives. Energy 185:229–38. doi:10.1016/j.energy.2019.07.042.
  • Tenorio, A. T., K. E. Kyriakopoulou, E. Suarez-Garcia, C. van den Berg, and A. J. van der Goot. 2018. Understanding differences in protein fractionation from conventional crops, and herbaceous and aquatic biomass-Consequences for industrial use. Trends in Food Science & Technology 71:235–45. doi:10.1016/j.tifs.2017.11.010.
  • Tumuluru, J. S. 2017. Biomass volume estimation and valorization for energy. BoD–Books on Demand, Rijeka, Croatia.
  • Verma, V. K., S. Bram, and J. De Ruyck. 2009. Small scale biomass heating systems: Standards, quality labelling and market driving factors–an EU outlook. Biomass & Bioenergy 33 (10):1393–402. doi:10.1016/j.biombioe.2009.06.002.
  • Villeneuve, J., J. H. Palacios, P. Savoie, and S. Godbout. 2012. A critical review of emission standards and regulations regarding biomass combustion in small scale units (< 3 MW). Bioresource Technology 111:1–11.
  • Wang, Q., K. Han, J. Gao, J. Wang, and C. Lu. 2017. Investigation of maize straw char briquette ash fusion characteristics and the influence of phosphorus additives. Energy & Fuels 31 (3):2822–30. doi:10.1021/acs.energyfuels.7b00047.
  • Wang, Q., K. Han, J. Qi, J. Zhang, H. Li, and C. Lu. 2018a. Investigation of potassium transformation characteristics and the influence of additives during biochar briquette combustion. Fuel 222:407–15. doi:10.1016/j.fuel.2018.02.156.
  • Wang, T., Li, Y., Zhang, J., Zhao, J., Liu, Y., Sun, L., Liu, B., Mao, H., Lin, Y., Li, W. and Ju, M., 2018b. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel. Waste management, 74:260–266
  • Wiselogel, A., S. Tyson, and D. Johnson. 2018. Biomass feedstock resources and composition. In Handbook on bioethanol, ed. Charles Wyman, 105–18. Routledge, New York, NY.
  • Zhang, Y., S. Xu, S. Zhong, X. S. Bai, and M. Yao. 2020. Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks. Energy and AI 2:100021. doi:10.1016/j.egyai.2020.100021.
  • Zhao, B., Y. Su, D. Liu, H. Zhang, W. Liu, and G. Cui. 2016. SO2/NOx emissions and ash formation from algae biomass combustion: Process character- istics and mechanisms. Energy 113:821–30. doi:10.1016/j.energy.2016.07.107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.