600
Views
7
CrossRef citations to date
0
Altmetric
Research Article

A GIS-MCDA BASED ASSESSMENT FOR SITING WIND FARMS AND ESTIMATION OF THE TECHNICAL GENERATION POTENTIAL FOR WIND POWER IN SERBIA

ORCID Icon, ORCID Icon & ORCID Icon
Pages 363-380 | Received 09 Aug 2020, Accepted 21 Nov 2020, Published online: 06 Jan 2021

References

  • Ali, S., J. Taweekun, K. Techato, J. Waewsak, and S. Gyawali. 2019. GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renewable Energy 132:1360–72. doi:10.1016/j.renene.2018.09.035.
  • Al-Yahyai, S., Y. Charabi, A. Gastli, and A. Al-Badi. 2012. Wind farm land suitability indexing using multi-criteria analysis. Renewable Energy 44:80–87. doi:10.1016/j.renene.2012.01.004.
  • Atici, K. B., A. B. Simsek, A. Ulucan, and M. U. Tosun. 2015. A GIS-based multiple criteria decision analysis approach for wind power plant site selection. Utilities Policy 37:86–96. doi:10.1016/j.jup.2015.06.001.
  • Aydin, N. Y., E. Kentel, and S. Duzgun. 2010. GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews 14 (1):364–73. doi:10.1016/j.rser.2009.07.023.
  • Ayodele, T. R., A. S. O. Ogunjuyigbe, O. Odigie, and J. L. Munda. 2018. A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Applied Energy 228:1853–69. doi:10.1016/j.apenergy.2018.07.051.
  • Baban, S. M., and T. Parry. 2001. Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy 24 (1):59–71. doi:10.1016/s0960-1481(00)00169-5.
  • Badang, D. A. Q., C. F. Sarip, and A. P. Tahud. 2018. Geographic information system (GIS) and multicriteria decision making (MCDM) for optimal selection of hydropower location in Rogongon, Iligan City. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 1–5. doi:10.1109/HNICEM.2018.8666266.
  • Bauer, L., and S. Matysik. 2020. GE General Electric GE 2.75 – 120. Accessed May 1, 2020. https://en.wind-turbine-models.com/turbines/983-ge-general-electric-ge-2.75-120#models
  • Blanco,M. I. 2009. The economics of wind energy. Renewable and Sustainable Energy Reviews 13 (6–7):1372–82. doi:10.1016/j.rser.2008.09.004.
  • Bognar, A. 1990. Geomorfološke i inženjersko-geomorfološke osobine otoka Hvara i ekološko vrednovanje reljefa [Geomorphological and engineering-geomorphological characteristics of the island of Hvar and ecological evaluation of relief]. Hrvatski Geografski Glasnik 52 (1):49–64. https://hrcak.srce.hr/37480.
  • Ćalić, J., M. Milošević, M. Milivojević, and T. Gaudenyi. 2017. Reljef Srbije [Relief of Serbia]. In Geografija Srbije [Geography of Serbia], ed. M. Radovanović, 22–93. Belgrade: Geographical Institute “Jovan Cvijić” SASA.
  • Dai, K., A. Bergot, C. Liang, W. N. Xiang, Z. Huang, et al. 2015. Environmental issues associated with wind energy – A review. Renewable Energy 75:911–21. doi:10.1016/j.renene.2014.10.074.
  • Dalla Longa, F., T. Kober, J. Badger, P. Volker, C. Hoyer-Klick, I. Hidalgo Gonzalez, H. Medarac, W. Nijs, S. Politis, D. Tarvydas, et al. 2018. Wind potentials for EU and neighbouring countries: input datasets for the JRC-EU-TIMES model. EUR 29083 EN, publications office of the european union, Luxembourg, LUX. Accessed May 1, 2020. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC109698/kjna29083enn_1.pdf.
  • Defne, Z., K. A. Haas, and H. M. Fritz. 2011. GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA. Renewable and Sustainable Energy Reviews 15 (5):2310–21. doi:10.1016/j.rser.2011.02.005.
  • Díaz-Cuevas, P. 2018. GIS-based methodology for evaluating the wind-energy potential of territories: A case study from Andalusia (Spain). Energies 11 (10):2789. doi:10.3390/en11102789.
  • Dragović, N. M., M. D. Vuković, and D. T. Riznić. 2019. Potentials and prospects for implementation of renewable energy sources in Serbia. Thermal Science 23 (5 Part B):2895–907. doi:10.2298/TSCI170312056D.
  • Ducić, V., and M. Radovanović. 2005. Klima Srbije [Climate of Serbia]. Belgrade, Serbia: Zavod za udžbenike.
  • Đurišić, Ž., M. Bubnjević, D. Mikičić, and N. Rajaković. 2007. Wind Atlas of Vojvodina, Serbia. Paper presented at the European Wind Energy Conference & Exhibition (EWEC 2007), Milano, Italy, May 7–10.
  • Đurišić, Ž., and J. Mikulović. 2012. Assessment of the wind energy resource in the South Banat region, Serbia. Renewable and Sustainable Energy Reviews 16 (5):3014–23. doi:10.1016/j.rser.2012.02.026.
  • Effat, H. A. 2014. Spatial modeling of optimum Zones for wind farms using remote sensing and geographic information system, application in the Red Sea, Egypt. Journal of Geographic Information System 6 (4):358–74. doi:10.4236/jgis.2014.64032.
  • Enevoldsen, P., F. H. Permien, I. Bakhtaoui, A. K. von Krauland, M. Z. Jacobson, G. Xydis, B. K. Sovacool, S. V. Valentine, D. Luecht, G. Oxley, et al. 2019. How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas. Energy Policy 132:1092–100. doi:10.1016/j.enpol.2019.06.064.
  • European Commission. 2011. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions: energy roadmap 2050. Accessed May 1, 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588323650081&uri=CELEX:52011DC0885
  • European Commission. 2016. EU reference scenario 2016: Energy, transport and GHG emissions Trends to 2050. Luxembourg: Publications Office of the European Union. doi:10.2833/001137.
  • European Environment Agency. 2016. European digital elevation model (EU-DEM) version 1.1 [dataset]. Copernicus Land Monitoring Service. Accessed April 4, 2020. http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-dem-v1.1/view
  • European Environment Agency. 2019a. Corine land cover (CLC) 2018, version 2020_20u1 [dataset]. Copernicus Land Monitoring Service. Accessed April 4, 2020. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
  • European Environment Agency. 2019b. EU-hydro – river network database, version 1.1 [dataset]. Copernicus Land Monitoring Service. Accessed March 15, 2020. https://land.copernicus.eu/imagery-in-situ/eu-hydro/eu-hydro-river-network-database
  • European Parliament, Council of the European Union. 2009. Directive 2009/28/EC of the european parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC (text with EEA relevance). Accessed May 1, 2020. http://data.europa.eu/eli/dir/2009/28/oj
  • European Parliament, Council of the European Union. 2018. Directive (EU) 2018/2001 of the european parliament and of the council of 11 December 2018 on the promotion of the use of energy from renewable sources (text with EEA relevance). Accessed May 1, 2020. http://data.europa.eu/eli/dir/2018/2001/oj
  • European Wind Energy Association. 2009. Wind energy – The facts: A guide to the technology, economics and future of wind power. London: Earthscan.
  • Eurostat. 2020a. Share of renewable energy in gross final energy consumption by sector [dataset]. Accessed May 1, 2020. https://ec.europa.eu/eurostat/product?code=NRG_IND_REN&mode=view
  • Eurostat. 2020b. Wind and water provide most renewable electricity [dataset]. Accessed May 1, 2020. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN–20200129–1
  • Evans, A., V. Strezov, and T. J. Evans. 2009. Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews 13 (5):1082–88. doi:10.1016/j.rser.2008.03.008.
  • Gburčik, P., V. Gburčik, M. Gavrilov, V. Srdanović, and S. Mastilović. 2006. Complementary regimes of solar and wind energy in Serbia. Geographica Pannonica 10 (10):22–25. doi:10.5937/GeoPan0610022G.
  • Gburčik, V., S. Mastilović, and Ž. Vučinić. 2013. Assessment of solar and wind energy resources in Serbia. Journal of Renewable and Sustainable Energy 5 (4):041822. doi:10.1063/1.4819504.
  • Geosrbija. 2019. Protected cultural property [dataset]. digital platform - open data NSDI service. Accessed March 29, 2020. https://geosrbija.rs/en/services-eng/open-data-of-nsdi-eng/
  • Ghobadi, M., and M. Ahmadipari. 2018. Environmental planning for wind power plant site selection using a fuzzy PROMETHEE-based outranking method in geographical information system. Environmental Energy and Economic Research 2 (2):75–87. doi:10.22097/EEER.2018.148760.1041.
  • Gigović, L., D. Pamučar, D. Božanić, and S. Ljubojević. 2017. Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renewable Energy 103:501–21. doi:10.1016/j.renene.2016.11.057.
  • Harker, P. T., and L. G. Vargas. 1987. The theory of ratio scale estimation: Saaty’s analytic hierarchy process. Management Science 33 (11):1383–403. doi:10.1287/mnsc.33.11.1383.
  • Höfer, T., Y. Sunak, H. Siddique, and R. Madlener. 2016. Wind farm siting using a spatial analytic hierarchy process approach: A case study of the Städteregion Aachen. Applied Energy 163:222–43. doi:10.1016/j.apenergy.2015.10.138.
  • Institute for Multidisciplinary Research. 2004. Studija energetskog potencijala srbije za korišćenje sunčevog zračenja i energije vetra [study of energy potential of Serbia for utilizing solar radiation and wind energy]. NPEE, Reg. No. EE704-1052A. Accessed ‎May 1, 2020. http://vetar-sunce.imsi.rs/tekstovi/Studija_EE704-1052A/
  • Institute for Nature Conservation of Serbia. n.d. Map of protected areas of Serbia [dataset]. https://cloud.gdi.net/visios/zzps
  • IRENA. 2019. Global energy transformation: A roadmap to 2050. 2019 ed. international renewable energy agency, Abu Dhabi. Accessed May 1, 2020. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
  • Jahangiri, M., R. Ghaderi, A. Haghani, and O. Nematollahi. 2016. Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: A review. Renewable and Sustainable Energy Reviews 66:38–52. doi:10.1016/j.rser.2016.07.069.
  • Jangid, J., A. K. Bera, M. Joseph, V. Singh, T. P. Singh, B. K. Pradhan, and S. Das. 2016. Potential zones identification for harvesting wind energy resources in desert region of India–A multi criteria evaluation approach using remote sensing and GIS. Renewable and Sustainable Energy Reviews 65:1–10. doi:10.1016/j.rser.2016.06.078.
  • Janke, J. R. 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy 35 (10):2228–34. doi:10.1016/j.renene.2010.03.014.
  • Joint Research Centre. 2016. Flood hazard map for Europe - 100-year return period [dataset]. European Union Open Data Portal. Accessed April 4, 2020. http://data.europa.eu/88u/dataset/jrc-floods-floodmapeu_rp100y-tif
  • Kokotović Kanazir, V., J. Stojilković Gnjatović, M. Filipović, S. Babović, M. Ivković, and S. Lović Obradović. 2017. Stanovništvo Srbije [Population of Serbia]. In Geografija Srbije [Geography of Serbia], ed. M. Radovanović, 506–613. Belgrade, Serbia: Geographical Institute “Jovan Cvijić” SASA.
  • Komarov, D., S. Stupar, A. Simonović, and M. Stanojević. 2012. Prospects of wind energy sector development in Serbia with relevant regulatory framework overview. Renewable and Sustainable Energy Reviews 16 (5):2618–30. doi:10.1016/j.rser.2012.01.067.
  • Latinopoulos, D., and K. Kechagia. 2015. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy 78:550–60. doi:10.1016/j.renene.2015.01.041.
  • Law on Spatial plan of the Republic of Serbia from 2010 to 2020. 2010. Official Gazette of the Republic of Serbia No 88/2010. Belgrade, Serbia: Official Gazette.
  • Mardani, A., A. Jusoh, E. K. Zavadskas, F. Cavallaro, and Z. Khalifah. 2015. Sustainable and renewable energy: an overview of the application of multiple criteria decision making techniques and approaches. Sustainability 7 (10):13947–84. doi:10.3390/su71013947.
  • Masters, G. M. 2004. Renewable and efficient electric power systems. Hoboken, New Jersey: John Wiley & Sons.
  • McKenna, R., S. Hollnaicher, and W. Fichtner. 2014. Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany. Applied Energy 115:103–15. doi:10.1016/j.apenergy.2013.10.030.
  • McKenna, R., S. Hollnaicher, P. O. Vd Leye, and W. Fichtner. 2015. Cost-potentials for large onshore wind turbines in Europe. Energy 83::217–29. doi:10.1016/j.energy.2015.02.016.
  • Mikičić, D., B. Radičević, and Ž. Ðurišić. 2006. Wind energy potential in the world and in Serbia and Montenegro. Facta Universitatis, Series: Electronics and Energetics 19:47–61. http://facta.junis.ni.ac.rs/eae/fu2k61/radicevic.pdf.
  • Milovanović, B., M. Radovanović, G. Stanojević, M. Pecelj, and J. Nikolić. 2017. Klima Srbije [Climate of Serbia]. In Geografija Srbije [Geography of Serbia], ed. M. Radovanović, 94–159. Belgrade: Geographical Institute “Jovan Cvijić” SASA.
  • Ministry of Energy, Development and Environmental Protection of the Republic of Serbia. 2013. National renewable energy action plan of the republic of Serbia. Accessed May 1, 2020. https://www.mre.gov.rs/doc/efikasnost-izvori/NREAP%20OF%20REPUBLIC%20OF%20SERBIA%2028_June_2013.pdf?uri=CELEX:32009L0028
  • Ministry of Mining and Energy. n.d. Decree on establishment of implementation program of the energy sector development strategy of the republic of Serbia for the period to 2025 year with projections to 2030, the year of the period 2017 to 2023 year. Accessed May 1, 2020. https://www.mre.gov.rs/doc/efikasnost-izvori/PROGRAM%20FOR%20THE%20IMPLEMENTATION%20ENERGY%20STRATEGY%20for%20the%20period%20from%202017%20until%202023.pdf
  • Ministry of Mining and Energy of the Republic of Serbia. 2016. Energy sector development strategy of the Republic of Serbia for the period by 2025 with projections by 2030. Accessed May 1, 2020. https://www.mre.gov.rs/doc/efikasnost-izvori/23.06.02016%20ENERGY%20SECTOR%20DEVELOPMENT%20STRATEGY%20OF%20THE%20REPUBLIC%20OF%20SERBIA.pdf
  • Ministry of Mining and Energy of the Republic of Serbia. 2020. Register of privileged producers of electricity, temporary privileged producers of electricity and producers from renewable energy sources 11.03.2020. Accessed March 29, 2020. https://www.mre.gov.rs/doc/registar-110320.html#Sec_Vetar
  • Monforti, F., T. Huld, K. Bódis, L. Vitali, M. D’isidoro, and R. Lacal-Arántegui. 2014. Assessing complementarity of wind and solar resources for energy production in Italy. A monte carlo approach. Renewable Energy 63:576–86. doi:10.1016/j.renene.2013.10.028.
  • Nasehi, S., S. Karimi, and H. Jafari. 2016. Application of fuzzy GIS and ANP for wind power plant site selection in East Azerbaijan Province of Iran. Computational Research Progress in Applied Science & Engineering 2 (3):116–24. http://www.crpase.com/archive/CRPASE-2016-VOL%2002-ISSUE%2003-05.pdf..
  • Nematollahi, O., P. Alamdari, M. Jahangiri, A. Sedaghat, and A. A. Alemrajabi. 2019. A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps. Energy 175:914–30. doi:10.1016/j.energy.2019.03.125.
  • Nikolić, N. 2017. Vetrenjače – Svuda gde je dozvoljeno i ekonomično [Windmills – Wherever allowed and economical]. In Srbija bez fosilnih goriva: Alternativni INDC: Alternativni scenario razvoja energetskog sektora do 2050. godine – Tranzicija na 100% obnovljive izvore energije [Serbia without fossil fuels: Alternative INDC: An alternative scenario energy sector development by 2050 – The transition to 100% renewable energy], ed. Đ. Samardžija, 19–21. Belgrade, Serbia: Jedan stepen Srbija.
  • Noorollahi, Y., H. Yousefi, and M. Mohammadi. 2016. Multi-criteria decision support system for wind farm site selection using GIS. Sustainable Energy Technologies and Assessments 13:38–50. doi:10.1016/j.seta.2015.11.007.
  • OpenStreetMap. 2018. [dataset]. Accessed April 4, 2020. https://www.openstreetmap.org
  • Pamučar, D., L. Gigović, Z. Bajić, and M. Janošević. 2017. Location selection for wind farms using GIS multi-criteria hybrid model: an approach based on fuzzy and rough numbers. Sustainability 9 (8):1315. doi:10.3390/su9081315.
  • Panwar, N. L., S. C. Kaushik, and S. Kothari. 2011. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 15 (3):1513–24. doi:10.1016/j.rser.2010.11.037.
  • Perpiña, C., J. C. Martínez-Llario, and Á. Pérez-Navarro. 2013. Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy 31:326–35. doi:10.1016/j.landusepol.2012.07.014.
  • QGIS (Version 3.12.1). 2020. https://qgis.org/en/site/forusers/download.html.
  • REN21. 2019. Renewables 2019 global status report. REN21 Secretariat, Paris, France. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf.
  • Ritchie, H., and M. Roser. 2020. Renewable energy. Published online at OurWorldInData.org. Accessed May 1, 2020. https://ourworldindata.org/renewable-energy
  • Rodman, L. C., and R. K. Meentemeyer. 2006. A geographic analysis of wind turbine placement in Northern California. Energy Policy 34 (15):2137–49. doi:10.1016/j.enpol.2005.03.004.
  • Romanić, D., M. Ćurić, I. Jovičić, and M. Lompar. 2015. Long-term trends of the ‘Koshava’ wind during the period 1949–2010. International Journal of Climatology 35 (2):288–302. doi:10.1002/joc.3981.
  • Romanić, D., M. Ćurić, M. Lompar, and I. Jovičić. 2016. Contributing factors to Koshava wind characteristics. International Journal of Climatology 36 (2):956–73. doi:10.1002/joc.4397.
  • Romanić, D., M. Ćurić, M. Zarić, M. Lompar, and I. Jovičić. 2016. Investigation of an extreme Koshava wind episode of 30 January–4 February 2014. Atmospheric Science Letters 17 (2):199–206. doi:10.1002/asl.643.
  • Ryberg, D. S., M. Robinius, and D. Stolten. 2017. Methodological framework for determining the land eligibility of renewable energy sources. arXiv:1712.07840. https://arxiv.org/abs/1712.07840.
  • Ryberg, D. S., M. Robinius, and D. Stolten. 2018. Evaluating land eligibility constraints of renewable energy sources in Europe. Energies 11 (5):1246. doi:10.3390/en11051246.
  • Ryberg, D. S., Z. Tulemat, D. Stolten, and M. Robinius. 2020. Uniformly constrained land eligibility for onshore European wind power. Renewable Energy 146:921–31. doi:10.1016/j.renene.2019.06.127.
  • Saaty, T. L. 1980. The Analytic Hierarchy Process. New York, NY: McGraw Hill.
  • Saidur, R., N. A. Rahim, M. R. Islam, and K. H. Solangi. 2011. Environmental impact of wind energy. Renewable and Sustainable Energy Reviews 15 (5):2423–30. doi:10.1016/j.rser.2011.02.024.
  • Sánchez-Lozano, J. M., M. S. García-Cascales, and M. T. Lamata. 2014. Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 73:311–24. doi:10.1016/j.energy.2014.06.024.
  • Sánchez-Lozano, J. M., M. S. García-Cascales, and M. T. Lamata. 2016. GIS-based onshore wind farm site selection using fuzzy multi-criteria decision making methods. Evaluating the case of Southeastern Spain. Applied Energy 17 1:86–102. doi:10.1016/j.apenergy.2016.03.030.
  • Sander + Partner. 2016. Wind atlas balkan [dataset]. Accessed May 1, 2020. https://balkan.wind-index.com/
  • Shi, J., and E. Erdem. 2017. Estimation of Wind Energy Potential and Prediction of Wind Power. In Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, ed.. T. M. Letcher, 25–49. London, United Kingdom: Academic Press. doi:10.1016/B978-0-12-809451-8.00003-5
  • Siyal, S. H., U. Mörtberg, D. Mentis, M. Welsch, I. Babelon, and M. Howells. 2015. Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach. Energy 83:447–61. doi:10.1016/j.energy.2015.02.044.
  • Sliz-Szkliniarz, B., and J. Vogt. 2011. GIS-based approach for the evaluation of wind energy potential: A case study for the kujawsko–pomorskie voivodeship. Renewable and Sustainable Energy Reviews 15 (3):1696–707. doi:10.1016/j.rser.2010.11.045.
  • Srbije, E. 2002. Mogućnost korišćenja energije vetra za proizvodnju električne energije [Possibilities for wind energy utilization for electricity production]. Belgrade, Serbia: Elektroprivreda Srbije.
  • Statistical Office of the Republic of Serbia. 2014. Comparative overview of the number of population in 1948, 1953, 1961, 1971, 1981, 1991, 2002 and 2011: data by settlements. statistical office of the republic of Serbia, Belgrade, Serbia. Accessed May 1, 2020. http://publikacije.stat.gov.rs/G2014/Pdf/G20144008.pdf
  • Statistical Office of the Republic of Serbia. 2019. Statistical yearbook оf the republic of Serbia 2019. Statistical Office of the Republic of Serbia, Belgrade, Serbia. Accessed May 1, 2020. https://publikacije.stat.gov.rs/G2019/Pdf/G20192052.pdf
  • Tegou, L. I., H. Polatidis, and D. A. Haralambopoulos. 2010. Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management 91 (11):2134–47. doi:10.1016/j.jenvman.2010.05.010.
  • Todorović, D., U. Marković, and Ž. Đurišić. 2013. Predikcija proizvodnje perspektivnih vetroelektrana u regionu banata [Prediction of production of perspective wind farms in Banat Region]. In Proceedings of the XII International-professional Symposium Infoteh-Jahorina 2013, ed. S. Milojković, 213–18. Istočno Sarajevo, Bosnia and Herzegovina: School of Electrical Engineering. https://infoteh.etf.ues.rs.ba/zbornik/2013/radovi/ENS-3/ENS-3-2.pdf
  • Unkašević, M., J. Mališic, and I. Tošić. 1999. Some aspects of the wind ‘Koshava’in the lower troposphere over Belgrade. Meteorological Applications 6 (1):69–79. doi:10.1017/S1350482799000997.
  • Unkašević, M., J. Mališić, and I. Tošić. 1998. On some new statistical characteristics of the wind “Koshava”. Meteorology and Atmospheric Physics 66 (1–2):11–21. doi:10.1007/BF01030445.
  • Unkašević, M., I. Tošić, and M. Obradović. 2007. Spectral analysis of the “Koshava” wind. Theoretical and Applied Climatology 89 (3–4):239–44. doi:10.1007/s00704-006-0261-5.
  • Van Haaren, R., and V. Fthenakis. 2011. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renewable and Sustainable Energy Reviews 15 (7):3332–40. doi:10.1016/j.rser.2011.04.010.
  • Villacreses, G., G. Gaona, J. Martínez-Gómez, and D. J. Jijón. 2017. Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy 109:275–86. doi:10.1016/j.renene.2017.03.041.
  • Vukmirović, D. 1985. The spatial structure of the koshava wind. In 11th International Conference for Alpine Meteorology, 14–16 September 1983, 10–15. Budapest, Hungarian: Hungarian Meteorological Service.
  • Walsh, C. 2020. Wind energy in Europe in 2019: trends and statistics. Brussels, Belgium: WindEurope. https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf
  • Watson, J. J., and M. D. Hudson. 2015. Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning 138:20–31. doi:10.1016/j.landurbplan.2015.02.001.
  • Wikimapia. 2012. [dataset]. Accessed April 4, 2020. https://wikimapia.org
  • Wizelius, T. 2012. Design and Implementation of a Wind Power Project. In Comprehensive Renewable Energy: Vol. 2. Wind Energy, ed. A. Sayigh, 391–430. Amsterdam, Netherlands: Elsevier.
  • Wu, X., C. Zhang, L. Jiang, and H. Liao. 2020. An integrated method with PROMETHEE and conflict analysis for qualitative and quantitative decision-making: case study of site selection for wind power plants. Cognitive Computation 12 (1):100–14. doi:10.1007/s12559-019-09675-7.
  • Yalcin, M., and F. K. Gul. 2017. A GIS-based multi criteria decision analysis approach for exploring geothermal resources: Akarcay basin (Afyonkarahisar). Geothermics 67:18–28. doi:10.1016/j.geothermics.2017.01.002.
  • Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8 (3):338–53. doi:10.1016/S0019-9958(65)90241-X.
  • Zafirakis, D. P., A. G. Paliatsos, and J. K. Kaldellis. 2012. Energy yield of contemporary wind turbines. In Comprehensive Renewable Energy: Vol. 2. Wind Energy, ed. A. Sayigh, 113–68. Amsterdam, Netherlands: Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.