160
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Application of response surface methodology for the joint optimization of performance and emission characteristics of a diesel engine

, , , , &
Pages 697-707 | Received 09 Oct 2020, Accepted 17 Dec 2020, Published online: 21 Mar 2021

References

  • Ates, F., and N. Erginel. 2016. Optimization of bio-oil production using response surfacemethodology and formation of polycyclic aromatic hydrocarbons (PAHs) atelevated pressures. Fuel Processing Technology 142:279–86. doi:10.1016/j.fuproc.2015.10.026.
  • Calam, A., H. Solmaz, E. Yılmaz, and Y. Içingür. 2019. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 168:1208–16. doi:10.1016/j.energy.2018.12.023.
  • Choi, S. K., H. G. Roh, K. S. Lee, and C. S. Lee. 2010. Effects of fuel injection parameters on the morphological characteristics of soot particulates and exhaust emissions from a light-duty diesel engine. Energy and Fuels 24:2875–82. doi:10.1021/ef901561u. 5
  • Deheri, C., S. K. Acharya, D. N. Thatoi, and A. P. Mohanty. 2020. A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 260:116337. doi:10.1016/j.fuel.2019.116337.
  • Dhole, A. E., R. B. Yarasu, and D. B. Lata. 2016. Investigations on the combustion duration and ignition delay period of a dual fuel diesel engine with hydrogen and producer gas as secondary fuels. Applied Thermal Engineering 107:524–32. doi:10.1016/j.applthermaleng.2016.06.151.
  • Dou, Z., C. Yao, H. Wei, B. Wang, M. Liu, C. Chen, J. Gao, and J. Shi. 2017. Experimental study of the effect of engine parameters on ultrafine particle in diesel/methanol dual fuel engine. Fuel 192:45–52. doi:10.1016/j.fuel.2016.12.006.
  • Duan, X., C. Srinivasakannan, J. Peng, L. Zhang, and Z. Zhang. 2011. Preparation of activated carbon from jatropha hull with microwave heating: Optimization using response surface methodology. Fuel Processing Technology 92:394–400. doi:10.1016/j.fuproc.2010.09.033. 3
  • E, J., M. Pham, Y. Deng, T. Nguyen, V. Duy, D. Le, W. Zuo, Q. Peng, and Z. Zhang. 2018. Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends. Energy 149:979–89. doi:10.1016/j.energy.2018.02.053.
  • El Shenawy, E. A., M. Elkelawy, H. A. Bastawissi, H. Panchal, and M. M. Shams. 2019. Comparative study of the combustion, performance, and emission characteristics of a direct injection diesel engine with a partially premixed lean charge compression ignition diesel engines. Fuel 249:277–85. doi:10.1016/j.fuel.2019.03.073.
  • Elkelawy, M., H. A. E. Bastawissi, K. K. Esmaeil, A. M. Radwan, H. Panchal, K. K. Sadasivuni, M. Suresh, and M. Israr. 2020. Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel 266:117072. doi:10.1016/j.fuel.2020.117072.
  • Gopal, K., A. P. Sathiyagnanam, B. R. Kumar, S. Saravanan, D. Rana, and B. Sethuramasamyraja. 2018. Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology. Journal of Cleaner Production 184:423–39. doi:10.1016/j.jclepro.2018.02.204.
  • Hotta, Y., M. Inayoshi, K. Nakakita, K. Fujiwara, and I. Sakata. 2005. Achieving lower exhaust emissions and better performance in an hsdi diesel engine with multiple injection. SAE Technical Paper 2005-01-0928. doi:10.4271/2005-01-0928.
  • Huang, H., Q. Wang, C. Shi, Q. Liu, and C. Zhou. 2016. Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate. Applied Energy 179:1194–208. doi: 10.1016/j.apenergy.2016.07.093.
  • Jain, A., A. P. Singh, and A. K. Agarwal. 2016. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine. Applied Energy 190:658–69.
  • Liang, X., B. Zhao, F. Zhang, and Q. Liu. 2019. Compact research for maritime selective catalytic reduction reactor based on response surface methodology. Applied Energy 254: 113702. doi:10.1016/j.apenergy.2019.113702.
  • Liu, H., S. Ma, Z. Zhang, Z. Zheng, and M. Yao. 2015. Study of the control strategies on soot reduction under early-injection conditions on a diesel engine. Fuel 139:472–81. doi:10.1016/j.fuel.2014.09.011.
  • Mousavi, S. M., R. K. Saray, K. Bahlouli, K. Poorghasemi, A. Maghbouli, and A. Sadeghlu. 2019. Effects of pilot diesel injection strategies on combustion and emission characteristics of dual-fuel engines at part load conditions. Fuel 258:116153. doi:10.1016/j.fuel.2019.116153.
  • Neely., G. D., S. Sasaki, and J. A. Leet. 2004. Experimental investigation of PCCI-DI combustionon emissions in a light-duty diesel engine. SAE Technical Paper 2004-01-0121.doi.org/10.4271/2004-01-0121
  • OConnell, N., A. Roll, R. Lechner, T. Luo, and M. Brautsch. 2019. PODE-blend as pilot fuel in a biomethane dual fuel engine: Experimental analysis of performance, combustion and emissions characteristics. Renewable Energy 143:101–11. doi: 10.1016/j.renene.2019.04.127.
  • Okude., K., K. Mori, S. Shiino, K. Yamada, and Y. Matsumoto. 2007. Effects of multiple injections on diesel emission and combustion characteristics. SAE Technical Paper 2007-01-4178. doi: 10.4271/2007-01-4178.
  • Park, S. H., H. J. Kim, and C. S. Lee. 2010. Effects of dimethyl-ether (DME) spray behavior in the cylinder on the combustion and exhaust emissions characteristics of a high speed diesel engine. Fuel Processing Technology 91:504–13. doi:10.1016/j.fuproc.2009.12.013. 5
  • Pinto, F., F. Paradela, I. Gulyurtlu, and A. M. Ramos. 2013. Prediction of liquid yields from the pyrolysis of waste mixtures using response surface methodology. Fuel Processing Technology 116:271–83. doi:10.1016/j.fuproc.2013.07.012.
  • Rao, L., Y. Zhang, S. Kook, K. Kim, and C. Kweon. 2018. Understanding in-cylinder soot reduction in the use of high pressure fuel injection in a small-bore diesel engine. Proceedings of the Combustion Institute 37:4839–46. doi:10.1016/j.proci.2018.09.013. 4
  • Salamatinia, B., H. Mootabadi, S. Bhatia, and A. Z. Abdullah. 2010. Optimization of ultrasonic -assisted heterogeneous biodiesel production from palm oil: A response surface methodology approach. Fuel Processing Technology 91:441–48. doi:10.1016/j.fuproc.2009.12.002. 5
  • Sen, M. 2019. The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend. Fuel 254:115617. doi:10.1016/j.fuel.2019.115617.
  • Shim, E., H. Park, and C. Bae. 2020. Comparisons of advanced combustion technologies (HCCI, PCCI, and dualfuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel 262:116436. doi:10.1016/j.fuel.2019.116436.
  • Simsek, S., and S. Uslu. 2020. Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN)fuel blends on diesel engine performance and emissions by response surface methodology (RSM). Fuel 275:118005. doi:10.1016/j.fuel.2020.118005.
  • Singh, Y., A. Sharma, G. K. Singh, A. Singla, and N. K. Singh. 2018. Optimization of performance and emission parameters of direct injection diesel engine fueled with pongamia methy lesters-response surface methodology approach. Industrial Crops and Products 126:218–26. doi:10.1016/j.indcrop.2018.10.035.
  • Singh, Y., A. Sharma, S. Tiwari, and A. Singh. 2019. Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach. Energy 168:909–18. doi:10.1016/j.energy.2018.12.013.
  • Tang, Q., H. Liu, M. Li, and M. Yao. 2017. Optical study of spray-wall impingement impact on early-injection gasoline partially premixed combustion at low engine load. Applied Energy 185:708–19. doi: 10.1016/j.apenergy.2016.10.108.
  • Xia, J., Q. Zhang, Z. Huang, D. Ju, and X. Lu. 2020. Experimental study of injection characteristics under diesel’s sub/trans/supercritical conditions with various nozzle diameters and injection pressures. Energy Conversion and Management 215:112949. doi:10.1016/j.enconman.2020.112949.
  • Xu, G., M. Jia, Y. Li, Y. Chang, H. Liu, and T. Wang. 2019a. Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel 253:114–28. doi:10.1016/j.fuel.2019.05.020.
  • Xu, L., X. Bai, C. Li, P. Tunestål, M. Tunér, and X. Lu. 2019b. Emission characteristics and engine performance of gasoline DICI engine in the transition from HCCI to PPC. Fuel 254: 115619. doi:10.1016/j.fuel.2019.115619.
  • Yu, H., X. Liang, G. Shu, Y. Wang, X. Sun, and H. Zhang. 2018. Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine. Applied Energy 227:634–42. doi:10.1016/j.apenergy.2017.09.014.
  • Yu, H., X. Liang, G. Shu, Y. Wang, and H. Zhang. 2016. Experimental investigation on spray-wall impingement characteristics of n-butanol/diesel blended fuels. Fuel 182:248–58. doi:10.1016/j.fuel.2016.05.115.
  • Yucel, Y. 2012. Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology. Fuel Processing Technology 99:97–102. doi:10.1016/j.fuproc.2012.02.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.