523
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of Cold Start Behavior of PEM Fuel Cell with Metal Foam as Cathode Flow Field under Subfreezing Temperature

, , , , , , , , & show all
Pages 1129-1146 | Received 03 Nov 2020, Accepted 13 Feb 2021, Published online: 18 Mar 2021

References

  • Awin, Y., and N. Dukhan. 2019a. Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells. Applied Energy 252:113458. doi:10.1016/j.apenergy.2019.113458.
  • Awin, Y., and N. Dukhan. 2019b. Novel flow field for proton exchange membrane fuel cells made from 72%-Porous aluminum foam. Procedia Computer Science 158:163–68. doi:10.1016/j.procs.2019.09.039.
  • Brett, and R. Chen. 2018. Characterisation of the diffusion properties of metal foam hybrid flow-fields for fuel cells using optical flow visualisation and X-ray computed tomography. Journal of Power Sources 395: 171–78. doi:10.1016/j.jpowsour.2018.05.070.
  • Fly, A., Q. Meyer, M. Whiteley, F. Iacoviello, T. Neville, P. R. Shearing, D. J. L. Brett, C. Kim, and R. Chen. 2019. X-ray tomography and modelling study on the mechanical behaviour and performance of metal foam flow-fields for polymer electrolyte fuel cells. International Journal of Hydrogen Energy 44 (14):7583–95. doi:10.1016/j.ijhydene.2019.01.206.
  • Fly,, A., D. Butcher, Q. Meyer, M. Whiteley, A. Spencer, C. Kim, P. R. Shearing, D. J. L. Shin, D.k., J. H. Yoo, et al. 2018. Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance. Renewable Energy 115:663–75. doi:10.1016/j.renene.2017.08.085.
  • Huo, S., N. J. Cooper, T. L. Smith, J. W. Park, and K. Jiao. 2017. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor. Applied Energy 203:101–14. doi:10.1016/j.apenergy.2017.06.028.
  • Huo, S., J. W. Park, and K. Jiao. 2019. On the water transport behavior and phase transition mechanism in cold start operation of PEM fuel cell. Applied Energy 233-234:776–88. doi:10.1016/j.apenergy.2018.10.068.
  • Ishikawa, Y., H. Hamada, M. Uehara, and M. Shiozawa. 2008. Super-cooled water behavior inside polymer electrolyte fuel cell cross-section below freezing temperature. Journal of Power Sources 179 (2):547–52. doi:10.1016/j.jpowsour.2008.01.031.
  • Ishikawa, Y., M. Shiozawa, M. Kondo, and K. Ito. 2014. Theoretical analysis of supercooled states of water generated below the freezing point in a PEFC. International Journal of Heat and Mass Transfer 74:215–27. doi:10.1016/j.ijheatmasstransfer.2014.03.038.
  • Jiao, K., and X. Li. 2009a. Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy 34 (19):8171–84. doi:10.1016/j.ijhydene.2009.07.102.
  • Jiao, K., and X. Li. 2009b. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells. Electrochimica Acta 54 (27):6876–91. doi:10.1016/j.electacta.2009.06.072.
  • Jiao, K., and X. Li. 2011. Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science 37:221–91.
  • Lee, Y.-H., S.-M. Li, C.-J. Tseng, C.-Y. Su, S.-C. Lin, and J.-W. Jhuang. 2017. Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells. International Journal of Hydrogen Energy 42 (34):22201–07. doi:10.1016/j.ijhydene.2017.03.233.
  • Li, L., S. Wang, L. Yue, and G. Wang. 2019. Cold-start icing characteristics of proton-exchange membrane fuel cells. International Journal of Hydrogen Energy 44 (23):12033–42. doi:10.1016/j.ijhydene.2019.03.115.
  • Li, X. 2006. Principles of fuel cells. New York: Taylor & Francis.
  • Luo, Y., and K. Jiao. 2018. Cold start of proton exchange membrane fuel cell. Progress in Energy and Combustion Science 64:29–61. doi:10.1016/j.pecs.2017.10.003.
  • Morin, A., Z. Peng, J. Jestin, M. Detrez, and G. Gebel. 2013. Water management in proton exchange membrane fuel cell at sub-zero temperatures: An in operando SANS-EIS coupled study. Solid State Ionics 252:56–61. doi:10.1016/j.ssi.2013.07.010.
  • Motupally, S., A. J. Becker, and J. W. Weidner. 2000. Diffusion of water in Nafion 115 membranes. Journal of Electrochemical Society 147 (9):3171–77. doi:10.1149/1.1393879.
  • Otsuki, Y., Y. Tamada, S. Inoue, K. Shigemasa, and T. Araki. 2020. Measurement of solidification heat from supercooled water freezing during PEFC cold start and visualization of ice distribution. International Journal of Hydrogen Energy 45 (31):15600–10. doi:10.1016/j.ijhydene.2020.04.004.
  • Park, J. E., W. Hwang, M. S. Lim, S. Kim, C.-Y. Ahn, O.-H. Kim, J.-G. Shim, D. W. Lee, J. H. Lee, Y.-H. Cho, et al. 2019. Achieving breakthrough performance caused by optimized metal foam flow field in fuel cells. International Journal of Hydrogen Energy 44 (39):22074–84. doi:10.1016/j.ijhydene.2019.06.073.
  • Peng, L., and Z. Wei. 2020. Catalyst engineering for electrochemical energy conversion from water to water: Water electrolysis and the hydrogen fuel cell. Engineering 6:653–79.
  • Shen, J., Z. Tu, and S. H. Chan. 2020. Evaluation criterion of different flow field patterns in a proton exchange membrane fuel cell. Energy Conversion and Management 213:112841. doi:10.1016/j.enconman.2020.112841.
  • Tabe, Y., M. Saito, K. Fukui, and T. Chikahisa. 2012. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell. Journal of Power Sources 208:366–73. doi:10.1016/j.jpowsour.2012.02.052.
  • Tan, W. C., L. H. Saw, H. S. Thiam, J. Xuan, Z. Cai, and M. C. Yew. 2018. Overview of porous media/metal foam application in fuel cells and solar power systems. Renewable and Sustainable Energy Reviews 96:181–97. doi:10.1016/j.rser.2018.07.032.
  • Wang, J., H. Wang, and Y. Fan. 2018. Techno-Economic challenges of fuel cell commercialization. Engineering 4 (3):352–60. doi:10.1016/j.eng.2018.05.007.
  • Wu, Y., J. I. S. Cho, M. Whiteley, L. Rasha, T. P. Neville, R. Ziesche, R. Xu, R. Owen, N. Kulkarni, J. Hack, et al. 2020. Characterization of water management in metal foam flow-field based polymer electrolyte fuel cells using in-operando neutron radiography. International Journal of Hydrogen Energy 45 (3):2195–205. doi:10.1016/j.ijhydene.2019.11.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.