276
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simple temperature modeling of proton exchange membrane fuel cell using load current and ambient temperature variations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 1352-1368 | Received 06 May 2020, Accepted 14 Mar 2021, Published online: 18 Apr 2021

References

  • Akbari, A. K. E., and M. N. M. Dahari. 2019. Using ANFIS technique for PEM fuel cell electric bicycle prediction model. Int. J. Environ. Sci. Technol 16 (1):7319–26. doi:10.1007/s13762-019-02392-6.
  • Alzeyoudi, H., A. P. Sasmito, and T. Shamim. 2015. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates. Energy Convers. Manag 105 (1):798–809. doi:10.1016/j.enconman.2015.07.082.
  • Ariza, H., A. Correcher, C. Sánchez, Á. Pérez-Navarro, and E. García. 2018. Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm. Energies 11 (8):2099. doi:10.3390/en11082099.
  • Asghar, A., S. Mirjalili, H. Faris, and I. Aljarah. 2019. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst 97 (1):849–72. doi:10.1016/j.future.2019.02.028.
  • Belmokhtar, K., M. L. Doumbia, and K. Agboussou. 2014. PEM fuel cell modelling using artificial neural networks (ANN). Int. J. Renew. Energy Res 4 (3):725–30.
  • Berning, T., and S. K. Kaer. 2020. A Thermodynamic Analysis of an Air-Cooled ProtonExchange Membrane Fuel Cell Operated in Different Climate Regions. Energies 13 (10):2611. doi:10.3390/en13102611.
  • Bharath, K., F. Blaabjerg, A. Haque, and M. Khan. 2020. Model-Based Data Driven Approach for Fault Identification in Proton Exchange Membrane Fuel Cell. Energies 13 (12):3144. doi:10.3390/en13123144.
  • Ghasemi, M., A. Ramiar, A. A. Ranjbar, and S. M. Rahgoshay. 2017. A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance. Int. J. Hydrogen Energy 42 (38):24319–37. doi:10.1016/j.ijhydene.2017.08.036.
  • Jung, J. H., S. Ahmed, and P. Enjeti. 2011. PEM fuel cell stack model development for real-time simulation applications. IEEE Transactions on Industrial Electronics 58 (9):4217–31. doi:10.1109/TIE.2010.2098365.
  • Junyan, S., and L. Shudan. 2015. Dynamic Window-based Adaptive Median Filter Alogorithm. Open Cybern. Syst. J 9 (1):1502–06. doi:10.2174/1874110X01509011502.
  • Kandidayeni, M., A. Macias, A. Khalatbarisoltani, L. Boulon, and S. Kelouwani. 2019. Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 183 (1):912–25. doi:10.1016/j.energy.2019.06.152.
  • Khan, S. S., H. Shareef, C. Bouhaddioui, and R. Errouissi. 2019c. Membrane-hydration-state detection in proton exchange membrane fuel cells using improved ambient-condition-based dynamic model. International J. Energy Res 44 (2):869–89. doi:10.1002/er.4927.
  • Khan, S. S., H. Shareef, I. A. Khan, V. Bhattacharjee, and K. W. Sultan. 2019a. Effect of ambient conditions on water management and faults in PEMFC systems: A Review. 2019 IEEE Can. Conf. Electr. Comput. Eng 1–5.
  • Khan, S. S., H. Shareef, and A. H. Mutlag. 2019b. Dynamic temperature model for proton exchange membrane fuel cell using online variations in load current and ambient temperature. Int. J. Green Energy 1 (1):1–10.
  • Khan, S. S., H. Shareef, A. Wahyudie, and S. N. Khalid. 2018. Novel dynamic semiempirical proton exchange membrane fuel cell model incorporating component voltages. Int. J. Energy Res 42 (8):2615–30. doi:10.1002/er.4038.
  • Khan, S. S., H. Shareef, A. Wahyudie, S. N. Khalid, and R. Sirjani. 2019d. Influences of ambient conditions on the performance of proton exchange membrane fuel cell using various models. Energy & Environment 30 (6):1–24. doi:10.1177/0958305X18802775.
  • Li, Q., W. Chen, S. Liu, Z. Gao, and S. Yang. 2012. Temperature optimization and control of optimal performance for a 300W open cathode proton exchange membrane fuel cell. Procedia Eng 29:179–83. doi:10.1016/j.proeng.2011.12.691.
  • Liu, D., T. Chen, and Y. Xie. 2020. A two-dimensional analytical model of PEMFC with dead-ended anode. Int. J. Green Energy 17 (4):255–73. doi:10.1080/15435075.2020.1722133.
  • Ma, T., W. Lin, Y. Yang, M. Cong, Z. Yu, and Q. Zhou. 2019. Research on control algorithm of proton exchange membrane fuel cell cooling system. Energies 12 (3692):1–15. doi:10.3390/en12193692.
  • Muller, E. A., and A. G. Stefanopoulou. 2006. Analysis, modeling, and validation for the thermal dynamics of a polymer electrolyte membrane fuel cell system. J. Fuel Cell Sci. Technol 3 (2):99–110. doi:10.1115/1.2173663.
  • Pandiyan, S., K. Jayakumar, N. Rajalakshmi, and K. S. Dhathathreyan. 2008. Thermal and electrical energy management in a PEMFC stack–An analytical approach. Int. J. Heat Mass Transf 51:469–73.
  • Panos, C., K. I. Kouramas, M. C. Georgiadis, and E. N. Pistikopoulos. 2012. Modelling and explicit model predictive control for PEM fuel cell systems. Chem. Eng. Sci 67 (1):15–25. doi:10.1016/j.ces.2011.06.068.
  • Qun, Y., L. Qing, Z. Peichang, and Y. Datai. 2014. Temperature modeling of PEM fuel cell based on fuzzy strategy. 26th Chinese Cont.l And Decis. Conf 1 (1):2383–87. https://doi.org/10.1109/CCDC.2014.6852572
  • Real, A. J., A. Arce, and C. Bordons. 2007. Development and experimental validation of a PEM fuel cell dynamic model. J. Power Sources 173 (1):310–24. doi:10.1016/j.jpowsour.2007.04.066.
  • Restrepo, C., T. Konjedic, A. Garces, J. Calvente, and R. Giral. 2014. Identification of a Proton-Exchange Membrane Fuel Cell ’ s Model Parameters by Means of an Evolution Strategy. Ieee Transactions On Industrial Informatics / a publication of the IEEE Industrial Electronics Society 11 (2):548–59. doi:10.1109/TII.2014.2317982.
  • Salim, R., M. Nabag, H. Noura, and A. Fardoun. 2015. The parameter identification of the NEXA 1.2kW PEMFC’s model using particle swarm optimization. Renew. Energy 82 (1):26–34. doi:10.1016/j.renene.2014.10.012.
  • Salva, J., A. Iranzo, F. Roza, and E. Tapia. 2016. Experimental validation of the polarization curve and the temperature distribution in a PEMFC stack using a one dimensional analytical model. Int. J. Hydrogen Energy 41 (45):20615–201632. doi:10.1016/j.ijhydene.2016.09.152.
  • Sohn, Y. J., G. G. Park, T. H. Yang, Y. G. Won, Y. L. Sung, D. Y. Chang, and S. Kim. 2005. Operating characteristics of an air-cooling PEMFC for portable applications. J. Power Sources 145 (2):604–09. doi:10.1016/j.jpowsour.2005.02.062.
  • Soltani, M., and S. M. T. Bathaee. 2008. A new dynamic model considering effects of temperature, pressure and internal resistance for PEM fuel cell power modules. 3rd Int. Conf. Deregul. Restruct. Power Technol 1 (1):2757–62.
  • Tao, S. U. N., Y. A. N. Si-jia, C. A. O. Guang-yi, and Z. H. U. Xin-jian. 2005. Modelling and control PEMFC using fuzzy neural networks. J. Zheijang Univ.-Sci. A 6 (1):1084–89. doi:10.1631/jzus.2005.A1084.
  • Yuan, W. W., K. Ou, and Y. B. Kim. 2020. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization. Appl. Thermal Eng 25:114715. doi:10.1016/j.applthermaleng.2019.114715.
  • Zhang, B., F. Lin, C. Zhang, R. Laio, and Y. Wang. 2020. Design and implementation of model predictive control for an open cathode fuel cell thermal management system. Renewable Energy 154:1014–24. doi:10.1016/j.renene.2020.03.073.
  • Zhang, G., and S. G. Kandlikar. 2012. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy 37 (3):2412–29. doi:10.1016/j.ijhydene.2011.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.