329
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Bilayered fault detection and classification scheme for low-voltage DC microgrid with weighted KNN and decision tree

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1149-1159 | Received 12 Feb 2021, Accepted 20 Sep 2021, Published online: 30 Sep 2021

References

  • Abdali, A., K. Mazlumi, and J. M. Guerrero. 2020. Integrated control and protection architecture for islanded PV-battery DC microgrids: Design, analysis and experimental verification. Applied Sciences 10 (24):8847. doi:10.3390/app10248847.
  • Abdali, A., K. Mazlumi, and R. Noroozian. 2019. High-speed fault detection and location in DC microgrids systems using multi-criterion system and neural network. Applied Soft Computing 79:341–53. doi:10.1016/j.asoc.2019.03.051.
  • Abdali, A., R. Noroozian, and K. Mazlumi. 2019. Simultaneous control and protection schemes for DC multi microgrids systems. International Journal of Electrical Power & Energy Systems 104:230–45. doi:10.1016/j.ijepes.2018.06.054.
  • Abdelgayed, T. S., W. G. Morsi, and T. S. Sidhu. 2017. Fault detection and classification based on co-training of semisupervised machine learning. IEEE Transactions on Industrial Electronics 65:1595–605. doi:10.1109/TIE.2017.2726961.
  • Almutairy, I., and M. Alluhaidan. 2017. Fault diagnosis based approach to protecting DC microgrid using machine learning technique. Procedia Computer Science 114:449–56. doi:10.1016/j.procs.2017.09.019.
  • Badihi, H., S. Jadidi, Y. Zhang, C. -Y. Su and W. -F. Xie. (2019) AI-driven intelligent fault detection and diagnosis in a hybrid AC/DC microgrid, 2019 1st International Conference on Industrial Artificial Intelligence (IAI). Shenyang, China: IEEE, 2019. DOI: 10.1109/ICIAI.2019.8850834.
  • Bayati, N., A. Hajizadeh, and M. Soltani. 2018. Protection in DC microgrids: A comparative review. IET Smart Grid 1 (3):66–75. doi:10.1049/iet-stg.2018.0035.
  • Bayati, N., H. R. Baghaee, A. Hajizadeh, M. Soltani, Z. Lin. 2021. Mathematical morphology-based local fault detection in DC microgrid clusters. Electric Power Systems Research 192:106981. doi:10.1016/j.epsr.2020.106981.
  • Chanda, N. K., and F. Yong (2011) ANN-based fault classification and location in MVDC shipboard power systems, 2011 North American Power Symposium. Boston, MA: IEEE, 2011. DOI: 10.1109/NAPS.2011.6025172.
  • Chatterjee, S., and B. K. Saha Roy. 2020. Bagged tree based anti-islanding scheme for multidg microgrids. Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-020-02324-0.
  • Chen C.-I., C.-K. Lan, Y.-C. Chen, C.-H. Chen C.-H, Chang. 2020. Wavelet energy fuzzy neural network-based fault protection system for microgrid. Energies 13. doi:10.3390/en13041007.
  • Dadgostar, H., M. Hajian, and K. Ahmed. 2021. DC grids DC fault detection using asymmetric pole inductors. Electric Power Systems Research 193:107016. doi:10.1016/j.epsr.2020.107016.
  • De Kerf, K., K. Srivastava, M. Reza, D. Bekaert, S. Cole, D. Van Hertem, R. Belmans. 2011. Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems. IET Generation, Transmission & Distribution 5 (4):496–503. doi:10.1049/iet-gtd.2010.0587.
  • Dehkordi, P. Z., A. S. Dobakhshari, and A. M. Ranjbar (2012) A decision tree-based method for power system fault diagnosis by synchronized phasor measurements, 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, 2012, 1–9, DOI: 10.1109/ISGTEurope.2012.6465808.
  • Delpha, C., D. Diallo, H. Al Samrout, N. Moubayed. 2018. Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing. Engineering Applications of Artificial Intelligence 73:68–79. doi:10.1016/j.engappai.2018.04.007.
  • Dhruba, K., and P. S. Bhowmik (2019) Classification of faults in a test power system using artificial neural network, 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS). Denpasar, Indonesia: IEEE, 2019. DOI: 10.1109/ICHVEPS47643.2019.9011045.
  • Diallo, D., M. E. H. Benbouzid, D. Hamad, X. Pierre. 2005. Fault detection and diagnosis in an induction machine drive: A pattern recognition approach based on concordia stator mean current vector. IEEE Transactions on Energy Conversion 20 (3):512–19. doi:10.1109/TEC.2005.847961.
  • Dudani, S. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics SMC-6(4):325–27. 1976. doi:10.1109/TSMC.1976.5408784.
  • Fix, E., and J. L. Hodges. 1951. Discriminatory analysis. nonparametric discrimination; consistency properties. Technical Report 4, USAF School of Aviation Medicine. TX, USA: Randolph Field.
  • Gou, J., L. Du, Y. Zhang, and T. Xiong. 2012. A new distance-weighted k nearest neighbor classifier. Journal of Information & Computational Science 9:1429–36.
  • Jamehbozorg, A., and S. M. Shahrtash. 2010. A decision-tree-based method for fault classification in single-circuit transmission lines. IEEE Transactions on Power Delivery 25 (4):2190–96. doi:10.1109/TPWRD.2010.2053222.
  • Jayamaha, D. K. J. S., N. W. A. Lidula, and A. D. Rajapakse. 2019. Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids. IEEE Access 7:145371–84. doi:10.1109/ACCESS.2019.2945397.
  • Jnr, B. A. 2020. Smart city data architecture for energy prosumption in municipalities: Concepts, requirements, and future directions. International Journal of Green Energy 17 (13):827–45. doi:10.1080/15435075.2020.1791878.
  • Khomfoi, S., and L. M. Tolbert. 2007. Fault diagnostic system for a multilevel inverter using a neural network. IEEE Transactions on Power Electronics 22 (3):1062–69. doi:10.1109/TPEL.2007.897128.
  • Lakshmi Narayanan, V., and R. Ramakrishnan. 2021. Design and implementation of an intelligent digital pitch controller for digital hydraulic pitch system hardware-in-the-loop simulator of wind turbine. International Journal of Green Energy 18 (1):17–36. doi:10.1080/15435075.2020.1814300.
  • Li, W., A. Monti, and F. Ponci. 2014. Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Transactions on Instrumentation and Measurement 63 (11):2651–65. doi:10.1109/TIM.2014.2313035.
  • Manohar, M., and E. Koley (2017) SVM based protection scheme for microgrid, 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). Kerala, India: IEEE, 2017, DOI: 10.1109/ICICICT1.2017.8342601.
  • Mohanty, R., S. Sahoo, A. K. Pradhan, F. Blaabjerg. 2021. A cosine similarity based centralized protection scheme for DC microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics 1–1. doi:10.1109/JESTPE.2021.3060587.
  • Mola, M., A. Afshar, N. Meskin, M. Karrari. 2020. Distributed fast fault detection in DC microgrids. IEEE Systems Journal 1–12. doi:10.1109/JSYST.2020.3035323.
  • Murphey, Y. L., M. A. Masrur, Z. Chen, B. Zhang. 2006. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Transactions On Mechatronics 11 (3):290–303. doi:10.1109/TMECH.2006.875568.
  • Naveen Venkatesh, S., and V. Sugumaran. 2021. Fault diagnosis of visual faults in photovoltaic modules. A Review, International Journal of Green Energy 18 (1):37–50. doi:10.1080/15435075.2020.1825443.
  • Peuget, R., S. Courtine, and J.-P. Rognon. 1998. Fault detection and isolation on a PWM inverter by knowledge-based model. IEEE Transactions on Industry Applications 34 (6):1318–26. doi:10.1109/28.739017.
  • Rao, G. K., and P. Jena. 2021. Fault detection in DC microgrid based on the resistance estimation. IEEE Systems Journal 1–12. doi:10.1109/JSYST.2020.3046054.
  • Reddy, Y. O., S. Chatterjee, A. K. Chakraborty, A. R. Bhowmik. 2020. Fault detection and location estimation for LVDC microgrid using self-parametric measurements. International Transactions on Electrical Energy Systems 30 (9):e12499. doi:10.1002/2050-7038.12499.
  • Samworth, R. 2012. Optimal weighted nearest neighbor classifiers. The Annals of Statistics 40 (5):2733–63. doi:10.1214/12-AOS1049.
  • Siavash, B., R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero. 2019. DC microgrid protection: A comprehensive review. IEEE Journal of Emerging and Selected Topics in Power Electronics. doi:10.1109/JESTPE.2019.2904588.
  • Som, S., and S. R. Samantaray. 2018. Efficient protection scheme for low-voltage DC micro-grid. IET Generation, Transmission & Distribution 12 (13):3322–29. doi:10.1049/iet-gtd.2017.1533.
  • Wang, T., L. Liang, S. K. Gurumurthy, F. Ponci, A. Monti, Z. Yang, R. W. De Doncker. 2020. Model-based fault detection and isolation in DC microgrids using optimal observers. IEEE Journal of Emerging and Selected Topics in Power Electronics 1–1. doi:10.1109/JESTPE.2020.3045418.
  • Yang, Q., J. Li, S. Le Blond, C. Wang. 2016. Artificial neural network based fault detection and fault location in the DC microgrid. Energy Procedia 103:129–34. doi:10.1016/j.egypro.2016.11.261.
  • Yang, Y., C. Huang, D. Zhou, Y. Li. 2021. Fault detection and location in multi-terminal DC microgrid based on local measurement. Electric Power Systems Research 194:107047. doi:10.1016/j.epsr.2021.107047.
  • Ying-Yi, H., and M. C. Mark Tristan Angelo. 2019. Fault detection, classification, and location by static switch in microgrids using wavelet transform and taguchi-based artificial neural network. IEEE Systems Journal. doi:10.1109/JSYST.2019.2925594.
  • Zhang, S., Y. Wang, M. Liu, Z. Bao. 2017. Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access 6:7675–86. doi:10.1109/ACCESS.2017.2785763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.