302
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low-cost marine biomass carbon as a high-performance electrocatalyst for vanadium redox flow battery

, , , , , & show all
Pages 1357-1366 | Received 02 Sep 2021, Accepted 09 Oct 2021, Published online: 16 Nov 2021

References

  • Bae, C., E. P. L. Roberts, M. H. Chakrabarti, and M. Saleem. 2011. All-chromium redox flow battery for renewable energy storage. International Journal of Green Energy 8 (2):248–264. doi:10.1080/15435075.2010.549598.
  • Chakrabarti, M. H., E. P. Lindfield Roberts, and M. Saleem. 2010. Charge–discharge performance of a novel undivided redox flow battery for renewable energy storage. International Journal of Green Energy 7 (4):445–460. doi:10.1080/15435075.2010.493826.
  • Cheng, D., Y. Li, J. Zhang, M. Tian, B. Wang, Z. He, L. Dai, and L. Wang. 2020. Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: Properties, structures, and perspectives. Carbon 170:527–542. doi:10.1016/j.carbon.2020.08.058.
  • Ding, J., H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, and D. Mitlin. 2015. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy & Environmental Science 8 (3):941–955. doi:10.1039/C4EE02986K.
  • Eifert, L., Z. Jusys, R. J. Behm, and R. Zeis. 2020. Side reactions and stability of pre-treated carbon felt electrodes for vanadium redox flow batteries: A DEMS study. Carbon 158:580–587. doi:10.1016/j.carbon.2019.11.029.
  • Ejigu, A., M. Edwards, and D. A. Walsh. 2015. Synergistic catalyst–support interactions in a graphene–Mn 3O4 electrocatalyst for vanadium redox flow batteries. ACS Catalysis 5 (12):7122–7130. doi:10.1021/acscatal.5b01973.
  • Ghimire, P. C., R. Schweiss, G. G. Scherer, T. M. Lim, N. Wai, A. Bhattarai, and Q. Yan. 2019. Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow betteries. Carbon 155:176–185. doi:10.1016/j.carbon.2019.08.068.
  • Goulet, M.-A., M. Skyllas-Kazacos, and E. Kjeang. 2016. The importance of wetting in carbon paper electrodes for vanadium redox reactions. Carbon 101:390–398. doi:10.1016/j.carbon.2016.02.011.
  • Guo, Y., W. Liu, R. Wu, L. Sun, Y. Zhang, Y. Cui, S. Liu, H. Wang, and B. Shan. 2018. Marine-biomass-derived porous carbon sheets with a tunable N-doping content for superior sodium-ion storage. ACS Applied Materials & Interfaces 10 (44):38376–38386. doi:10.1021/acsami.8b14304.
  • Han, P., H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, and G. Cui. 2011. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/ VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon 49 (2):693–700. doi:10.1016/j.carbon.2010.10.022.
  • He, C., S. Song, J. Liu, V. Maragou, and P. Tsiakaras. 2010. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction. Journal of Power Sources 195 (21):7409–7414. doi:10.1016/j.jpowsour.2010.05.050.
  • He, Z., A. Su, C. Gao, Z. Zhou, C. Pan, and S. Liu. 2012. Carbon paper modified by hydrothermal ammoniated treatment for vanadium redox battery. Ionics 19 (7):1021–1026. doi:10.1007/s11581-012-0827-4.
  • He, Z., G. Cheng, Y. Jiang, Y. Li, J. Zhu, W. Meng, H. Zhou, L. Dai, and L. Wang. 2020. Novel 2D porous carbon nanosheet derived from biomass: Ultrahigh porosity and excellent performances toward V2+/V3+ redox reaction for vanadium redox flow battery. International Journal of Hydrogen Energy 45:3959–3970 doi:10.1016/j.ijhydene.2019.12.045.
  • He, Z., Y. Jiang, W. Meng, J. Zhu, Y. Liu, L. Dai, and L. Wang. 2016. Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries. Electrochimica Acta 222:1491–1500. doi:10.1016/j.electacta.2016.11.128.
  • Huang, Z., C. Cheng, L. Li, Z. Guo, G. He, X. Yu, R. Liu, H. Han, L. Deng, and W. Fu. 2018. Morpholine-based gemini surfactant: Synthesis and its application for reverse froth flotation of carnallite ore in potassium fertilizer production. Journal of Agricultural and Food Chemistry 66 (50):13126–13132. doi:10.1021/acs.jafc.8b05560.
  • Huang, Z., C. Cheng, Z. Liu, W. Luo, H. Zhong, G. He, C. Liang, L. Li, L. Deng, and W. Fu. 2019. Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation. Bioresource Technology 275:421–424. doi:10.1016/j.biortech.2018.12.106.
  • Jiang, Y., Y. Li, J. Zhu, Z. He, W. Meng, H. Zhou, L. Wang, and L. Dai. 2018. Fungi-derived, functionalized, and wettability-improved porous carbon materials: An excellent electrocatalyst toward VO2+/VO2+ redox reaction for vanadium redox flow battery. Journal of the Electrochemical Society 165 (9):A1813–A1821. doi:10.1149/2.1221809jes.
  • Li, J., K. Liu, X. Gao, B. Yao, K. Huo, Y. Cheng, X. Cheng, D. Chen, B. Wang, and W. Sun, et al. 2015. Oxygen- and nitrogen-enriched 3d porous carbon for supercapacitors of high volumetric capacity. ACS Applied Materials & Interfaces 7 (44):24622–24628. doi:10.1021/acsami.5b06698.
  • Li, Q., A. Bai, T. Zhang, S. Li, and H. Sun. 2020. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries. Royal Society Open Science 7 (7):200402. doi:10.1098/rsos.200402.
  • Li, W., J. Liu, and C. Yan. 2011. Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon 49 (11):3463–3470. doi:10.1016/j.carbon.2011.04.045.
  • Li, W., J. Liu, and C. Yan. 2012. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery. Electrochimica Acta 79:102–108. doi:10.1016/j.electacta.2012.06.109.
  • Li, Y., Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, and S. Ramakrishna. 2016. Preparation of nitrogen- and phosphorus co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99:556–563. doi:10.1016/j.carbon.2015.12.066.
  • Liu, X., Q. Zhang, J. Huang, S. Zhang, H. Peng, and F. Wei. 2013. Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries. Journal of Energy Chemistry 22 (2):341–346. doi:10.1016/S2095-4956(13)60042-X.
  • Lobato, J., J. Oviedo, P. Cañizares, M. A. Rodrigo, and M. Millán. 2020. Impact of carbonaceous particles concentration in a nanofluidic electrolyte for vanadium redox flow batteries. Carbon 156:287–298. doi:10.1016/j.carbon.2019.09.045.
  • Lv, Y., C. Han, Y. Zhu, T. Zhang, S. Yao, Z. He, L. Dai, and L. Wang. 2021. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives. Journal of Materials Science & Technology 75:96–109 doi:10.1016/j.jmst.2020.09.042.
  • Lv, Y., Y. Li, C. Han, J. Chen, Z. He, J. Zhu, L. Dai, W. Meng, and L. Wang. 2020. Application of porous biomass carbon materials in vanadium redox flow battery. Journal of Colloid and Interface Science 566:434–443. doi:10.1016/j.jcis.2020.01.118.
  • Ma, Q., L. Xing, H. Su, W. Zhang, W. Yang, and Q. Xu. 2020. Numerical investigation on the dispersion effect in vanadium redox flow battery. Chemical Engineering Journal 393:124753. doi:10.1016/j.cej.2020.124753.
  • Minke, C., and T. Turek. 2018. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – A review. Journal of Power Sources 376:66–81. doi:10.1016/j.jpowsour.2017.11.058.
  • Park, M., J. Ryu, Y. Kim, and J. Cho. 2014. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy & Environmental Science 7:3727–3735 doi:10.1039/c4ee02123a.
  • Skyllas-Kazacos, M., L. Cao, M. Kazacos, N. Kausar, and A. Mousa. 2016. Vanadium electrolyte studies for the vanadium redox battery –A review. ChemSusChem 9 (13):1521–1543. doi:10.1002/cssc.201600102.
  • Sun, C., E. Negro, K. Vezzù, G. Pagot, G. Cavinato, A. Nale, Y. Herve Bang, and V. Di Noto. 2019. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochimica Acta 309:311–325. doi:10.1016/j.electacta.2019.03.056.
  • Sun, D., X. Xue, Y. Tang, Y. Jing, B. Huang, Y. Ren, Y. Yao, H. Wang, and G. Cao. 2015. High-rate LiTi2(PO4)3@N–C composite via Bi-nitrogen sources doping. ACS Applied Materials & Interfaces 7 (51):28337–28345. doi:10.1021/acsami.5b08697.
  • Wang, F., X. Wu, C. Li, Y. Zhu, L. Fu, Y. Wu, and X. Liu. 2016. Nanostructured positive electrode materials for post-lithium ion batteries. Energy & Environmental Science 9:3570–3611 doi:10.1039/c6ee02070d.
  • Wang, T., C. Li, X. Xie, B. Lu, Z. He, S. Liang, and J. Zhou. 2020. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 14 (12):16321–16347. doi:10.1021/acsnano.0c07041.
  • Wei, L., H. E. Karahan, S. Zhai, Y. Yuan, Q. Qian, K. Goh, A. K. Ng, and Y. Chen. 2016. Microbe-derived carbon materials for electrical energy storage and conversion. Journal of Energy Chemistry 25 (2):191–198. doi:10.1016/j.jechem.2015.12.001.
  • Xie, B., C. Li, J. Chen, and N. Wang. 2020. Exfoliated 2D hexagonal boron nitride nanosheet stabilized stearic acid as composite phase change materials for thermal energy storage. Solar Energy 204:624–634. doi:10.1016/j.solener.2020.05.004.
  • Xu, C., X. Li, T. Liu, and H. Zhang. 2017. Design and synthesis of a free-standing carbon nano-fibrous web electrode with ultra large pores for high-performance vanadium flow batteries. RSC Advances 7 (73):45932–45937. doi:10.1039/C7RA07365H.
  • Zhang, Z., Y. Huang, X. Liu, C. Chen, Z. Xu, and P. Liu. 2020. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157:244–254. doi:10.1016/j.carbon.2019.10.052.
  • Zhou, X., X. Zhang, Y. Lv, L. Lin, and Q. Wu. 2019. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries. Carbon 153:674–681. doi:10.1016/j.carbon.2019.07.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.