350
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of coupling effects of gradient porous electrode and flow channel pattern on iron-vanadium redox flow battery

, ORCID Icon, , &
Pages 1375-1387 | Received 14 Sep 2021, Accepted 21 Oct 2021, Published online: 14 Nov 2021

References

  • Abbott, A. P., G. Capper, K. J. McKenzie, K. S. Ryder. 2006. Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochimica Acta 51 (21):4420–25. doi:10.1016/j.electacta.2005.12.030.
  • Alotto, P., M. Guarnieri, and F. Moro. 2014. Redox flow batteries for the storage of renewable energy: A review. Renewable and Sustainable Energy Reviews 29:325–35. doi:10.1016/j.rser.2013.08.001.
  • Chakrabarti, B. K., Kalamaras, E., Singh, A.K., Bertei, A., Rubio-Garcia, J., Yufit, V., Tenny, K.M., Wu, B., Tariq, F., Hajimolana, Y.S. and Brandon, N.P. 2020. Modelling of redox flow battery electrode processes at a range of length scales: A review. Sustainable Energy & Fuels 4 (11):5433–68. doi:10.1039/d0se00667j.
  • Chakrabarti, M. H., E. P. Lindfield Roberts, and M. Saleem. 2010. Charge–discharge performance of a novel undivided redox flow battery for renewable energy storage. International Journal of Green Energy 7 (4):445–60. doi:10.1080/15435075.2010.493826.
  • Chang, Y. C., J.-Y. Chen, D. M. Kabtamu, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang. 2017. High efficiency of CO 2 -activated graphite felt as electrode for vanadium redox flow battery application. Journal of Power Sources 364:1–8. doi:10.1016/j.jpowsour.2017.07.103.
  • Chen, W., J. Kang, Q. Shu, Y. Zhang. 2019. Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries. Energy 180:341–55. doi:10.1016/j.energy.2019.05.037.
  • Chu, D., X. Li, and S. Zhang. 2015. A non-isothermal transient model for a metal free quinone-bromide flow battery. Electrochimica Acta 190:434–45. doi:10.1016/j.electacta.2015.12.128.
  • Chulheung, B., E. P. L. Roberts, M. H. Chakrabarti, and M. Saleem. 2011. All-chromium redox flow battery for renewable energy storage. International Journal of Green Energy 8 (2):248–64. doi:10.1080/15435075.2010.549598.
  • Dennison, C. R., E. Agar, B. Akuzum, E. C. Kumbur. 2016. Enhancing mass transport in redox flow batteries by tailoring flow field and electrode design. Journal of the Electrochemical Society 163.1:A5163–A5169. doi:10.1149/2.0231601jes.
  • Dong, Q. F. H. M. Zhang, M. G. Jin, M. S. Zheng, Y. D. Zhan, S. G. Sun and Z. G. Lin. , 2005. Research progresses in a flow redox battery. Electrochemistry 11:237–43. doi:10.13208/j.electrochem.2005.03.001.
  • Esan, O. C., X. Shi, Z. Pan, X. Huo, L. An, T. S. Zhao. 2020. Modeling and simulation of flow batteries. Advanced Energy Materials 10 (31):2000758. doi:10.1002/aenm.202000758.
  • Gonzalez, Z., C. Flox, C. Blanco, M. Granda, J. R. Morante, R. Menéndez, R. Santamaría. 2017. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. Journal of Power Sources 338:155–62. doi:10.1016/j.jpowsour.2016.10.069.
  • Heydari, N., M. Kheirmand, and H. Heli. 2019. A nanocomposite of CoFe2O4-carbon microspheres for electrochemical energy storage applications. International Journal of Green Energy 16 (1):1–7. doi:10.1080/15435075.2019.1580198.
  • Houser, J., A. Pezeshki, J. T. Clement, D. Aaron, M. M. Mench. 2017. Architecture for improved mass transport and system performance in redox flow batteries. Journal of Power Sources 351:96–105. doi:10.1016/j.jpowsour.2017.03.083.
  • Jiang, H., B. W. Zhang, J. Sun, X. Z. Fan, W. Shyy, T. S. Zhao. 2019. A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries. Journal of Power Sources 440:227159. doi:10.1016/j.jpowsour.2019.227159.
  • Jiang, Y., Y. Jiang, Y. Li, J. Zhu, H. Zhou, W. Meng, L. Wang, L. Dai. 2018. Carbon layer-exfoliated, wettability-enhanced, SO3H−functionalized carbon paper: A superior positive electrode for vanadium redox flow battery. Carbon 127:297–304. doi:10.1016/j.carbon.2017.11.006.
  • Latha, T. J., and S. Jayanti. 2014. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems. Journal of Power Sources 248.Feb.15:140–46. doi:10.1016/j.jpowsour.2013.09.084.
  • Lee, J., J. Kim, and H. Park. 2019. Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size. International Journal of Hydrogen Energy 44 (56):29483–92. doi:10.1016/j.ijhydene.2019.05.013.
  • Lopez-Atalaya, M., G. Codina, J. R. Perez, J. L. Vazquez, A. Aldaz. 1992. Optimization studies on a Fe/Cr redox flow battery. Journal of Power Sources 39 (2):147–54. doi:10.1016/0378-7753(92)80133-V.
  • Lu, M. Y., -W.-W. Yang, X.-S. Bai, Y.-M. Deng, Y.-L. He. 2019. Performance improvement of a vanadium redox flow battery with asymmetric electrode designs. Electrochimica Acta 319:210–26. doi:10.1016/j.electacta.2019.06.158.
  • Ma, C., X. Li, L. Lin, L. Chen, M. Wang, J. Zhou. 2018. A two-dimensional porous electrode model for designing pore structure in a quinone-based flow cell. Journal of Energy Storage 18:16–25. doi:10.1016/j.est.2018.04.007.
  • Marschewski, J., Brenner, L., Ebejer, N., Ruch, P., Michel, B. and Poulikakos, D. 2017. 3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries. Energy Environ. Sci 10:780–87. doi:10.1039/C6EE03192G.
  • Mayrhuber, I., C. R. Dennison, V. Kalra, E. C. Kumbur. 2014. Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries. Journal of Power Sources 260:251–58. doi:10.1016/j.jpowsour.2014.03.007.
  • Miller, M. A., J. S. Wainright, R. F. Savinell. 2017. Iron electrodeposition in a deep eutectic solvent for flow batteries. Journal of the Electrochemical Society 164 (4):A796–A803. doi:10.1149/2.1141704jes.
  • Rivera, F. F., B. Miranda-Alcántara, G. Orozco, C. Ponce de León, L. F. Arenas. 2020. Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid dynamics: Mathematical and modelling aspects of porous media. Frontiers of Chemical Science and Engineering 15 (20):399–409. doi:10.1007/s11705-020-1934-9.
  • Shah, A. A., M. J. Watt-Smith, and F. C. Walsh. 2008. A dynamic performance model for redox flow batteries involving soluble species. Electrochimical Acta 53:8087–100. doi:10.1016/j.electacta.2008.05.067.
  • Sun, Z. W., Z. N. Duan, J. Q. Bai and Y. Wang. 2020. Numerical study of the performance of all vanadium redox flow battery by changing the cell structure. The Journal of Energy Storage 29 (2):101370. doi:10.1016/0378-7753(92)80133-V.
  • Tsushima, S., and T. Suzuki. 2020. Modeling and simulation of vanadium redox flow battery with interdigitated flow field for optimizing electrode architecture. Journal of the Electrochemical Society 167 (2):020553. doi:10.1149/1945-7111/ab6dd0.
  • Xu, J., Q. Ma, L. Xing, H. Li, P. Leung, W. Yang, H. Su, Q. Xu. 2020. Modeling the effect of temperature on performance of an iron vanadium redox flow battery with deep eutectic solvent (DES) electrolyte. Journal of Power Sources 449 (1):227491. doi:10.1016/j.jpowsour.2019.227491.
  • Xu, Q., L. Y. Qin, Y. N. Ji, P. K. Leung, H. N. Su, F. Qiao, W. W. Yang, A. A. Shah, H. M. Li. 2018. A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability. Electrochimica Acta 293 (1):426–31. doi:10.1016/j.electacta.2018.10.063.
  • Yan, Y., Y. Li, M. Skyllas-Kazacos, J. Bao. 2016. Modelling and simulation of thermal behavior of vanadium redox flow battery. Journal of Power Sources 322:116–28. doi:10.1016/j.jpowsour.2016.05.011.
  • Zhou, X. L., T. S. Zhao, L. An, Y. K. Zeng, X. H. Yan. 2015. A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility. Applied Energy 158:157–66. doi:10.1016/j.apenergy.2015.08.028.
  • Zhou, X. L., Zhao, T.S., An, L., Zeng, Y.K. and Wei, L. 2017. Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources 339:1–12. doi:10.1016/j.jpowsour.2016.11.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.