430
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Direct ammonia solid oxide fuel cells based on spinel ACo2O4 (A=Zn, Fe, Ni) composite cathodes at intermediate temperature

, , , , , , , & show all
Pages 1623-1632 | Received 28 Sep 2021, Accepted 04 Dec 2021, Published online: 18 Jan 2022

References

  • Almessiere, M. A., Y. Slimani, U. Kurtan, S. Guner, M. Sertkol, S. E. Shirsath, S. Akhtar, A. Baykal, and I. Ercan. 2019. Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2−xO4 (0.0 ≤ x ≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochemistry 58:104638–46. doi:10.1016/j.ultsonch.2019.104638.
  • Bhattacharyya, D., R. J. I. Rengaswamy, and E. C. Research. 2009. A Review of Solid Oxide Fuel Cell (SOFC) Dynamic Models. Industrial & Engineering Chemistry Research 48 (13):6068–86. doi:10.1021/ie801664j.
  • Che, H., A. Liu, J. Mu, Y. Bai, C. Wu, X. Zhang, Z. Zhang, and G. Wang. 2017. Facile synthesis of flower-like NixCo3-xO4 (0≤x≤1.5) microstructures as high-performance electrode materials for supercapacitors. Electrochimica acta 225:283–91. doi:10.1016/j.electacta.2016.12.164.
  • Chen, S., S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, and G. Centi. 2017. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angewandte Chemie - International Edition 56 (10):2699–703. doi:10.1002/anie.201609533.
  • Chi, B., J. Li, Y. Han, and Y. Chen. 2004. Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode. International Journal of Hydrogen Energy 29 (6):605–10. doi:10.1016/S0360-3199(03)00219-2.
  • Choi, Y., E. C. Brown, S. M. Haile, and W. Jung. 2016. Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization. Nano Energy 23:161–71. doi:10.1016/j.nanoen.2016.03.015.
  • Davari, E., and D. G. Ivey. 2018. Bifunctional electrocatalysts for Zn-air batteries. Sustainable Energy and Fuels 2 (1):39–67. doi:10.1039/C7SE00413C.
  • Fabbri, E., D. Pergolesi, and E. Traversa. 2010. Electrode materials: A challenge for the exploitation of protonic solid oxide fuel cells. Science and Technology of Advanced Materials 11 (4):044301–10. doi:10.1088/1468-6996/11/4/044301.
  • Gao, Z., L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett. 2016. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science 9:1602–44.
  • Inokawa, H., T. Ichikawa, and H. Miyaoka. 2015. Catalysis of nickel nanoparticles with high thermal stability for ammonia decomposition. Applied Catalysis 491:184–88. doi:10.1016/j.apcata.2014.12.004.
  • Jacobson, A. J. 2010. Materials for Solid Oxide Fuel Cells†. Chemistry of Materials 22 (3):660–74. doi:10.1021/cm902640j.
  • Klerke, A., C. H. Christensen, J. K. Nørskov, and T. Vegge. 2008. Ammonia for hydrogen storage: Challenges and opportunities. Journal of Materials Chemistrym 18 (20):2304–10. doi:10.1039/b720020j.
  • Li, H., C. Su, C. Wang, and Z. Lü. 2020. Electrochemical performance evaluation of FeCo2O4 spinel composite cathode for solid oxide fuel cells. Journal of Alloys and Compounds 829:1–6. doi:10.1016/j.jallcom.2020.154493.
  • Liu, H., X. Zhu, M. Cheng, Y. Cong, and W. Yang. 2011. Novel Mn1.5Co1.5O4spinel cathodes for intermediate temperature solid oxidefuel cells. Chemical Communications 47 (8):2378–80. doi:10.1039/C0CC04300A.
  • Perna, A., M. Minutillo, E. Jannelli, V. Cigolotti, S. W. Nam, and J. Han. 2018. Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC. Applied Energy 231:1216–29. doi:10.1016/j.apenergy.2018.09.138.
  • Shao, L., P. Wang, Q. Zhang, L. Fan, N. Zhang, and K. Sun. 2017. Nanostructured CuCo2O4 cathode for intermediate temperature solid oxide fuel cells via an impregnation technique. Journal Power Sources 343:268–74. doi:10.1016/j.jpowsour.2017.01.053.
  • Song, Y., W. Wang, L. Ge, X. Xu, Z. Zhang, P. JuliO, W. Zhou, and Z. Shao. 2017. Rational design of a water‐storable hierarchical architecture decorated with amorphous barium oxide and nickel nanoparticles as a solid oxide fuel cell anode with excellent sulfur tolerance. Advanced Science 4 (11):1700337–170044. doi:10.1002/advs.201700337.
  • Stambouli, A. B., E. Traversa, and S. E. Reviews. 2002. Solid Oxide Fuel Cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews 6 (5):433–55. doi:10.1016/S1364-0321(02)00014-X.
  • Tovstolytkin, A. I., D. V. Gor’kov, and A. I. Matvienko. 2008. Conduction mechanisms in partially crystallized (La,Na)MnO3 films. Low Temperature Physics 34 (3):192–97. doi:10.1063/1.2888758.
  • Wang, S., Z. Ding, and X. Wang. 2015. A stable ZnCo 2O 4cocatalyst for photocatalytic CO2reduction. Chemical Communications 51 (8):1517–19. doi:10.1039/C4CC07225A.
  • Wang, W., C. Zhu, K. Xie, and L. Gan. 2018. High performance, coking-resistant and sulfur-tolerant anode for solid oxide fuel cell. Journal Power Sources 406:1–6. doi:10.1016/j.jpowsour.2018.10.040.
  • Xu, H., B. Chen, H. Zhang, P. Tan, G. Yang, J. Irvine, and M. Ning. 2018. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction. Journal Power Sources 382:135–43. doi:10.1016/j.jpowsour.2018.02.033.
  • Yang, J. M., T. M. Afs. Okanishi, H. Eguchi, H. Muroyama, T. Matsui, and K. Eguchi. 2015. Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O<sub>3−δAnode for direct ammonia-fueled solid oxide fuel cells. ACS Applied Materials & Interfaces 7 (13):7406–12. doi:10.1021/acsami.5b01048.
  • Zhang, D., G. Zhang, and L. Zhang. 2017. Multi-shelled FeCo2O4 hollow porous microspheres/CCFs magnetic hybrid and its dual-functional catalytic performance. Chemical Engineering Journal 330:792–803. doi:10.1016/j.cej.2017.08.018.
  • Zhang, Q., B. E. Martin, and A. Petric. 2008. Solid oxide fuel cell composite cathodes prepared by infiltration of copper manganese spinel into porous yttria stabilized zirconia. Journal of Materials Chemistrym 18 (36):4341–46. doi:10.1039/b808162j.
  • Zhao, M., J. Deng, J. Liu, Y. Li, J. Liu, Z. Duan, J. Xiong, Z. Zhao, Y. Wei, W. Song, et al. 2019. Roles of Surface-Active Oxygen Species on 3DOM Cobalt-Based Spinel Catalysts MxCo<sub>3–xO4(M = Zn and Ni) for NOx-Assisted Soot Oxidation. ACS Catalysis 9 (8):1700337–7567. doi:10.1021/acscatal.9b01995.
  • Zhen, S., W. Sun, P. Li, G. Tang, D. Rooney, K. Sun, and X. Ma. 2016. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources 315:140–44. doi:10.1016/j.jpowsour.2016.03.046.
  • Zhong, F., Y. L. Li, L. Lin, L. Lin, L. Lin, L. Jiang, L. Jiang, and L. Jiang. 2021. Geometric structure distribution and oxidation state demand of cations in spinel NixFe1-xCo2O4 composite cathodes for solid oxide fuel cells. Chemical Engineering Journal 425:7406–12. doi:10.1016/j.cej.2021.131822.
  • Zhu, H., S. Zhang, Y. X. Huang, L. Wu, and S. Sun. 2013. Monodisperse MxFe<sub>3–xO4(M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction. Nano Letters 13 (6):2947–51. doi:10.1021/nl401325u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.