515
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dealloying of modified Al-Si alloy to prepare porous silicon as Lithium-ion battery anode material

, , , &
Pages 1658-1664 | Received 08 Jul 2021, Accepted 23 Nov 2021, Published online: 04 Jan 2022

References

  • Chan, C. K., R. N. Patel, M. J. O’connell, B.A. Korgel, Y. Cui. 2010. Solution-grown silicon nanowires for lithium-ion battery anodes [J]. Acs Nano 4 (3):1443–50. doi:10.1021/nn901409q.
  • Chang, J., X. Huang, G. Zhou, S. Cui, S. Mao, J. Chen. 2015. Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications [J]. Nano Energy 15:679–87. doi:10.1016/j.nanoen.2015.05.020.
  • Chen, D., X. Mei, J. G., M. Lu, J. Xie, J. Lu, J. Y. Lee. 2012. Reversible Lithium‐ion storage in silver‐treated nanoscale hollow porous Silicon particles [J]. Angewandte Chemie (International Ed. In English) 51 (10):2409–13. doi:10.1002/anie.201107885.
  • Feng, J., Z. Zhang, L. Ci, W. Zhai, Q. Ai, S. Xiong. 2015. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries [J]. Journal of Power Sources 287 (aug.1):177–83. doi:10.1016/j.jpowsour.2015.04.051.
  • Feng, K., M. Li, W. Liu, A. G. Kashkooli, X. Xiao, M. Cai, Z. Chen. 2018. Silicon-based anodes for Lithium-ion batteries: From fundamentals to practical applications [J]. Small 14 (8):1702737. doi:10.1002/smll.201702737.
  • Feng, X., J. Yang, P. Gao, J. Wang, Y. Nuli. 2012. Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithium ion batteries [J]. Rsc Advances 2 (13):5701–06. doi:10.1039/c2ra20107k.
  • Gao, P., H. Tang, A. Xing, Z. Bao. 2017. Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications [J]. Electrochimica Acta 228:545–52. doi:10.1016/j.electacta.2017.01.119.
  • Han, Y., B. Liu, Z. Xiao, W. Zhang, X. Wang, G. Pan, Y. Xia, X. Xia, J. Tu. 2021. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 3 (2):155–74. doi:10.1002/inf2.12166.
  • Hao, S. J., C. L. Li, K. Zhu. 2014. The preparation of high performance porous silicon powders by etching Al-Si alloy in acid solution for Lithium ion battery [J]. Journal of Electrochemistry 20 (1):1–4.
  • He, W., H. Tian, F. Xin, W. Han. 2015. Scalable fabrication of micro-sized bulk porous Si from Fe–Si alloy as a high performance anode for lithium-ion batteries [J]. Journal of Materials Chemistry A 3:17956–62
  • Huang, Z., N. Geyer, P. Werner, J. de Boor, U. Gösele. 2011. Metal-assisted chemical etching of silicon: A review [J]. Advanced Materials 23 (2):285–308. doi:10.1002/adma.201001784.
  • Igor, K., Z. Bogdan, M. Alexandre, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin. 2011. A major constituent of brown algae for use in high-capacity Li-ion batteries [J]. Science 334 (6052):75–79. doi:10.1126/science.1209150.
  • Jia, H., P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang. 2011. Novel three‐dimensional mesoporous silicon for high power Lithium‐ion battery anode material [J]. Advanced Energy Materials 1 (6):1036–39. doi:10.1002/aenm.201100485.
  • Jiang, Z., C. Li, S. Hao, K. Zhu, P. Zhang. 2014. An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery [J]. Electrochimica Acta 115:393–98. doi:10.1016/j.electacta.2013.08.123.
  • Jin, Y., S. Zhang, B. Zhu, Y. Tan, X. Hu, L. Zong, J. Zhu. 2015. Simultaneous purification and perforation of low-grade Si sources for Lithium-ion battery anode [J]. Nano Letters 15 (11):7742. doi:10.1021/acs.nanolett.5b03932.
  • Jung-Keun, Y., K. Jongsoon, J. Yeon Sik, K. Kang. 2012. Scalable fabrication of silicon nanotubes and their application to energy storage [J]. Advanced Materials 24 (40):5452–56. doi:10.1002/adma.201201601.
  • Liu, D. S., D. H. Liu, B. H. Hou, -Y.-Y. Wang, J.-Z. Guo, Q.-L. Ning, X.-L. Wu. 2018. 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries [J]. Electrochimica Acta 264:292–300. doi:10.1016/j.electacta.2018.01.129.
  • Liu, M., X. Ma, L. Gan, Z. Xu, D. Zhu, L. Chen. 2014. A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries [J]. Journal of Materials Chemistry A 2 (40):17107–14. doi:10.1039/C4TA02888K.
  • Ma, H., F. Cheng, J. Y. Chen, J.-Z. Zhao, C.-S. Li, Z.-L. Tao, J. Liang. 2007. Nest-like silicon nanospheres for high-capacity Lithium storage [J]. Advanced Materials 19 (22):4067–70. doi:10.1002/adma.200700621.
  • Nadimpalli, S. P. V., V. A. Sethuraman, S. Dalavi, B. Lucht, M. J. Chon, V. B. Shenoy, P. R. Guduru. 2012. Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries [J]. Journal of Power Sources 215 (5):145–51. doi:10.1016/j.jpowsour.2012.05.004.
  • Park, M. H., M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho. 2009. Silicon nanotube battery anodes [J]. Nano Letters 9 (11):3844–47. doi:10.1021/nl902058c.
  • Pathak, A. D., U. K. Chanda, K. Samanta, A. Mandal, K. K. Sahu, S. Pati. 2019. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium-ion batteries [J]. Electrochimica Acta 317:654–62. doi:10.1016/j.electacta.2019.06.040.
  • Su, X., Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, and J. Wu. Silicon‐based nanomaterials for Lithium‐ion batteries: A review [J]. Advanced Energy Materials, 2014, 4(1):1300882.
  • Wang, Q., H. Yang, T. Meng, J. Yang, B. Huang, F. L. Gu, S. Zhang, C. Meng, Y. Tong. 2021c. Boosting electron transfer with heterointerface effect for high-performance Lithium-ion storage. [J]. Energy Storage Materials 36:365–75. doi:10.1016/j.ensm.2021.01.003.
  • Wang, Q., T. Meng, Y. Li, J. Yang, B. Huang, S. Ou, C. Meng, S. Zhang, Y. Tong. 2021b. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery. [J]. Energy Storage Materials 39:354–64. doi:10.1016/j.ensm.2021.04.043.
  • Wang, Q., Y. Li, T. Meng, B. Huang, L. Hu, H. Su, C. Meng, Y. Tong. 2021a. Engineering heterostructure-incorporated metal silicates anchored on carbon nanotubes for highly durable Lithium storage. [J]. ACS Applied Energy Materials 4 (2):1548–59. doi:10.1021/acsaem.0c02738.
  • Wang, Q., Y. Zhang, H. Jiang, X. Li, Y. Cheng, C. Meng. 2019. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: A potential electrode material for flexible all solid-state asymmetric supercapacitor [J]. Chemical Engineering Journal 362:818–29. doi:10.1016/j.cej.2019.01.102.
  • Wang, W., Z. Favors, R. Ionescu, R. Ye, H. H. Bay, M. Ozkan, C. S. Ozkan. 2016. Monodisperse porous silicon spheres as anode materials for Lithium ion batteries [J]. Scientific Reports 5. doi:10.1038/srep19420.
  • Wang, Y. Y., B. H. Hou, J. Z. Guo, Q.-L. Ning, W.-L. Pang, J. Wang, C.-L. Lü, X.-L. Wu. 2018. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage [J]. Advanced Energy Materials 8 (18):1703252. doi:10.1002/aenm.201703252.
  • Wu, H., G. Zheng, N. Liu, T. J. Carney, Y. Yang, Y. Cui. 2012. Engineering empty space between Si nanoparticles for lithium-ion battery anodes [J]. Nano Letters 12 (2):904. doi:10.1021/nl203967r.
  • Xu, R. 2020. A new approach in recycling waste foundry sand for the preparation of porous silicon powder [J]. International Journal of Electrochemical Science 15 (8):7633–45. doi:10.20964/2020.08.32.
  • Yang, Y., S. Liu, X. Bian, J. Feng, Y. An, C. Yuan. 2018. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance Lithium-ion battery anode [J]. ACS Nano 12:2900–8.
  • Yu, H., Y. Xiqian, W. Yanhong, H. Li, X. Huang. 2011. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency [J]. Advanced Materials 23 (42):4938–41. doi:10.1002/adma.201102568.
  • Yurong, J. 2010. Electrochemical corrosion technology and mechanism of silicon-based three-dimensional structure. [D]. Wuhan, Hubei, P.R.China: Wuhan University of Technology.
  • Zhu, L., X. Yang, Y. H. Xiang, P. Kong, X.-W. Wu. 2021. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. [J]. Rare Metals 40 (6):1383–90. doi:10.1007/s12598-020-01555-6.
  • Zuo, X., J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng. 2017. Silicon based lithium-ion battery anodes: A chronicle perspective review [J]. Nano Energy 31 (Complete):113–43. doi:10.1016/j.nanoen.2016.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.