1,021
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Smart grid mechanism for green energy management: A comprehensive review

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 284-308 | Received 20 Dec 2020, Accepted 31 Jan 2022, Published online: 22 Feb 2022

References

  • Aghajani, G., and N. Ghadimi. 2018. Multi-Objective energy management in a microgrid. Energy Reports 4:218–225. doi:10.1016/j.egyr.2017.10.002.
  • Aitzhan, N. Z., and D. Svetinovic. 2018. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing 15 (5):840–852. doi:10.1109/TDSC.2016.2616861.
  • Alharbi, T., and K. Bhattacharya. 2017. Optimal scheduling of energy resources and management of loads in isolated/islanded microgrids. Canadian Journal of Electrical and Computer Engineering 40 (4):284–294. doi:10.1109/CJECE.2017.2753219.
  • Alonso, M., H. Amaris, D. Alcala, and M. F. R. Diana. 2020. Smart sensors for smart grid reliability. Sensors 20 (8):1–23. doi:10.3390/s20082187.
  • Alves, G., D. Marques, I. Silva, L. A. Guedes, and M. G. Silva. 2019. A methodology for dependability evaluation of smart grids. Energies 12 (9):1–23. doi:10.3390/en12091817.
  • Andishgar, M. H., E. Gholipour, and R. Hooshmand. 2017. An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews 80:1043–1060. doi:10.1016/j.rser.2017.05.267.
  • Ansari, M., A. T. Al-Awami, E. Sortomme, and M. A. Abido. 2015. Coordinated bidding of ancillary services for vehicle-to-grid using fuzzy optimization. IEEE Transactions on Smart Grid 6 (1):261–270. doi:10.1109/TSG.2014.2341625.
  • Artale, G., A. Cataliotti, V. Cosentino, D. D. Cara, S. Guaiana, S. Nuccio, N. Panzavecchia, and G. Tine. 2017. Smart interface devices for distributed generation in smart grids: The case of islanding. IEEE Sensors Journal 17 (23):7803–7811. doi:10.1109/JSEN.2017.2726185.
  • Arun, R., and P. Jain. 2017. The internet of things in the power sector opportunities in Asia and the pacific. ADB Sustainable Development Working Paper Series. Accessed August 04, 2020. https://www.adb.org/sites/default/files/publication/350011/sdwp-48.pdf.
  • Asaad, M., F. Ahmad, M. S. Alam, and Y. Rafat. 2018. IoT enabled monitoring of an optimized electric vehicleʻs battery system. Mobile Networks and Applications 23 (4):994–1005. doi:10.1007/s11036-017-0957-z.
  • Baghaee, H. R., D. Mlakic, S. Nikolovski, and T. Dragicevic. 2020. Anti-Islanding protection of PV-based microgrids consisting of PHEVs using SVMs. IEEE Transactions on Smart Grid 11 (1):483–500. doi:10.1109/TSG.2019.2924290.
  • Baneshi, E., H. Kolahduzloo, J. Ebrahimi, M. Mahmoudian, E. Pouresmaeil, and E. M. G. Rodrigues. 2020. Coordinated power sharing in islanding microgrids for parallel distributed generations. Electronics 9 (11):1–16. doi:10.3390/electronics9111927.
  • Berger, L. T., A. Schwager, and J. J. Escudero-Garzás. 2013. Power line communications for smart grid applications. Journal of Electrical and Computer Engineering 2013:1–16. doi:10.1155/2013/712376.
  • Bianchini, G., M. Casini, A. Vicino, and D. Zarrilli. 2016. Demand-Response in building heating systems: A model predictive control approach. Applied Energy 168:159–170. doi:10.1016/j.apenergy.2016.01.088.
  • Bozorgavari, S. A., J. Aghaei, S. Pirouzi, V. Vahidinasab, H. Farahmand, and M. Korpås. 2019. Two-Stage hybrid stochastic/robust optimal coordination of distributed battery storage planning and flexible energy management in smart distribution network. Journal of Energy Storage 26:100970. doi:10.1016/j.est.2019.100970.
  • Carrasqueira, P., M. J. Alves, and C. H. Antunes. 2017. Bi-Level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles. Information Sciences 418:405–420. doi:10.1016/j.ins.2017.08.019.
  • Cheraitia, M., and S. Haddadi. 2016. Simulated annealing for the uncapacitated exam scheduling problem. International Journal of Metaheuristics 5 (2):156–170. doi:10.1504/IJMHEUR.2016.080266.
  • Christos, S., E. P. Kostas, K. Byung-Gyu, and B. Gupta. 2018. Secure integration of IoT and cloud computing. Future Generation Computer Systems 78 (3):964–975. doi:10.1016/j.future.2016.11.031.
  • Chunhua, L., K. T. Chau, D. Wu, and S. Gao. 2013. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Invited Paper Proceedings of the IEEE 101 (11):2409–2427. doi:10.1109/JPROC.2013.2271951.
  • Cintuglu, M. H., H. Martin, and O. A. Mohammed. 2015. Real-Time implementation of multiagent-based game theory reverse auction model for microgrid market operation. IEEE Transactions on Smart Grid 6 (2):1064–1072. doi:10.1109/TSG.2014.2387215.
  • Daki, H., A. E. Hannani, A. Aqqal, A. Haidine, and A. Dahbi. 2017. Big data management in smart grid: Concepts, requirements and implementation. Journal of Big Data 4 (1):13 1–19. doi:10.1186/s40537-017-0070-y.
  • Daoud, M., and X. Fernando. 2011. On the communication requirements for the smart grid. Energy and Power Engineering 3 (01):53–60. doi:10.4236/epe.2011.31008.
  • Daywes, P. N., E. G. Domingue, A. P. Coimbra, A. T. Almeida, A. J. Alves, and W. P. Calixto. 2017. Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil. Energy Economics 64:238–250. doi:10.1016/j.eneco.2017.03.020.
  • Deng, R., Z. Yang, M.-Y. Chow, and J. Chen. 2015. A survey on demand response in smart grids: Mathematical models and approaches. IEEE Transactions on Industrial Informatics 11 (3):570–582. doi:10.1109/TII.2015.2414719.
  • Erdemir, E., D. Gündüz, and P. L. Dragotti. 2020. Smart meter privacy. In Privacy in dynamical systems, F. Farokhi. ed., Singapore: Springer. doi:10.1007/978-981-15-0493-8_2.
  • Esther, H. P. L., Z. Lukszo, and P. Herder. 2018. Conceptualization of vehicle-to-grid contract types and their formalization in agent-based models. Complexity 2018:1–11. doi:10.1155/2018/3569129.
  • Farzin, H., M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie. 2017a. Reliability studies of modern distribution systems integrated with renewable generation and parking lots. IEEE Transactions on Sustainable Energy 8 (1):431–440. doi:10.1109/TSTE.2016.2598365.
  • Farzin, H., M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie. 2017b. Stochastic energy management of microgrids during unscheduled islanding period. IEEE Transactions on Industrial Informatics 13 (3):1079–1087. doi:10.1109/TII.2016.2646721.
  • Fellah, K., R. Abbou, and M. Khiat. 2021. Energy management system for surveillance and performance analysis of a micro-grid based on discrete event systems. International Journal of Green Energy 18 (11):1104–1116. doi:10.1080/15435075.2021.1891909.
  • Feng, S. 2007. Analysis and optimization of mac protocols for wireless networks. PhD thesis, University of Melbourne.
  • Franek, L., and P. Fiedler. 2017. A multiconductor model of PLC in medium-voltage lines. Energies 10 (6):1–16. doi:10.3390/en10060816.
  • Fu, Q., A. Nasiri, V. Bhavaraju, A. Solanki, T. Abdallah, and D. C. Yu. 2014. Transition management of microgrids with high penetration of renewable energy. IEEE Transactions on Smart Grid 5 (2):539–549. doi:10.1109/TSG.2013.2286952.
  • Gai, K., Y. Wu, L. Zhu, M. Qiu, and M. Shen. 2019. Privacy-Preserving energy trading using consortium blockchain in smart grid. IEEE Transactions on Industrial Informatics 15 (6):3548–3558. doi:10.1109/TII.2019.2893433.
  • Galli, S., A. Scaglione, and Z. Wang. 2011. For the grid and through the grid: The role of power line communications in the smart grid. Proceedings of the IEEE 99 (6):998–1027. doi:10.1109/JPROC.2011.2109670.
  • Garau, M., E. Ghiani, G. Celli, F. Pilo, and S. Corti. 2018. Co-Simulation of smart distribution network fault management and reconfiguration with lte communication. Energies 11 (6):1–17. doi:10.3390/en11061332.
  • García-López, F. D. P., M. Barragán-Villarejo, A. Marano-Marcolini, J. M. Maza-Ortega, and J. L. Martínez-Ramos. 2018. Experimental assessment of a centralised controller for high-res active distribution networks. Energies 11 (12):1–16. doi:10.3390/en11123364.
  • Ghadi, S., and B. L. Evans. 2017. Design tradeoffs in joint power line and wireless transmission for smart grid communications. IEEE International Symposium on Power Line Communications and Its Applications, 83–88. doi: 10.1109/ISPLC.2015.7147594.
  • Ghazvini, M. A. F., J. Soares, O. Abrishambaf, R. Castro, and Z. Vale. 2017. Demand response implementation in smart households. Energy and Buildings 143:129–148. doi:10.1016/j.enbuild.2017.03.020.
  • Gong, X., A. D. Paola, D. Angeli, and G. Strbac. 2019. A game-theoretic approach for price-based coordination of flexible devices operating in integrated energy-reserve markets. Energy 189:116153. doi:10.1016/j.energy.2019.116153.
  • Hadlach, H., H. Touijer, M. Zahri, M. El-Alami, and M. Habibi. 2017. Modeling of a smart grid monitoring system using power line communication. International Renewable and Sustainable Energy Conference, Tangier, Morocco, 1–4.
  • Haidar, A. M. A., A. Fakhar, and K. M. Muttaqi. 2020. An effective power dispatch strategy for clustered micro-grids while implementing optimal energy management and power sharing control using power line communication. IEEE Transactions on Industry Applications 56 (4):4258–4271. doi:10.1109/TIA.2020.2992974.
  • Haidar, A. M. A., and H. W. Hau. 2019. A framework for placement assessment of synchrophasor measurement in practical power grid: A case study from borneo. Journal of Electrical and Electronics Engineering 12 (2):11–16. https://www.proquest.com/docview/2408847149
  • Haidar, A. M. A., and N. Julai. 2019. An improved scheme for enhancing the ride-through capability of grid-connected photovoltaic systems towards meeting the recent grid codes requirements. Energy for Sustainable Development 50:38–49. doi:10.1016/j.esd.2019.02.007.
  • Haidar, A. M. A., V. Smith, and S. Elphick. 2021. A multipurpose problem-based learning platform for education and research under smart grid umbrella. International Journal of Electrical Engineering & Education 58 (1):3–32. doi:10.1177/0020720918816001.
  • Haidar, A. M. A., C. Sridhathan, H. Abdulsalam, and A. Saleh. 2011. Power line enhancement for data monitoring of neural electrical activity in the human body. Scientific Research and Essays 6 (25):5411–5426. doi:10.5897/SRE11.1134.
  • Hamid, E., P. Nallagownden, M. N. Nursyarizal, and M. A. L. Muthuvalu. 2014. Intelligent demand side management technique for industrial consumer. Proceedings of the 5th International Conference on Intelligent and Advanced Systems, 1–6. doi: 10.1109/ICIAS.2014.6869518.
  • Harun, T., and S. Bacha. 2018. Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts. IEEE Transactions on Vehicular Technology 67 (11):10281–10292. doi:10.1109/TVT.2018.2867428.
  • Hasan, M. M., and H. T. Mouftah. 2019. Cloud-Centric collaborative security service placement for advanced metering infrastructures. IEEE Transactions on Smart Grid 10 (2):1339–1348. doi:10.1109/TSG.2017.2763954.
  • Hennane, Y., J. P. Martin, A. Berdai, S. Pierfederici, and F. Meibody-Tabar. 2020. Power sharing and synchronization strategies for multiple PCC islanded microgrids. International Journal of Electrical and Electronic Engineering & Telecommunications 9 (3):156–162. doi:10.18178/ijeetc.9.3.156-162.
  • Henríquez, R., G. Wenzel, D. Olivares, and M. Negrete-Pincetic. 2017. Participation of demand response aggregators in electricity markets: Optimal portfolio management. IEEE Transactions on Smart Grid 99:1–11. doi:10.1109/TSG.2017.2673783.
  • Hikma, S., A. M. A. Haidar, N. Julai, M. M. Ahmed, P. R. P. Hoole, and M. Marai. 2017. Adaptive algorithm for optimal route configuration in multi-hop wireless sensor network. International Journal of Control Theory and Application 10 (16):267–275. https://ir.unimas.my/id/eprint/25255/
  • Hirsch, A., Y. Parag, and J. Guerrero. 2018. Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews 90:402–411. doi:10.1016/j.rser.2018.03.040.
  • Hu, M., and F. Xiao. 2018. Price-Responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm. Applied Energy 219:151–164. doi:10.1016/j.apenergy.2018.03.036.
  • Hussain, A., S. M. Arif, and M. Aslam. 2017. Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews 71:12–28. doi:10.1016/j.rser.2016.12.033.
  • Jang, D., J. Eom, M. J. Park, and J. J. Rho. 2016. Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers. Energy Policy 88:11–26. doi:10.1016/j.enpol.2015.09.029.
  • Jianbin, G., K. O. Asamoah, E. B. Sifah, A. Smahi, Q. Xia, H. Xia, X. Zhang, and G. Dong. 2018. Grid monitoring: Secured sovereign blockchain based monitoring on smart grid. IEEE Access 6:9917–9925. doi:10.1109/ACCESS.2018.2806303.
  • Jiang, B., and A. Mamishev. 2004. Robotic monitoring of power systems. IEEE Transactions on Power Delivery 19 (3):912–918. doi:10.1109/TPWRD.2004.829918.
  • Jingcheng, G., Y. Xiao, J. Liu, W. Liang, and C. L. P. Chen. 2012. A survey of communication/networking in Smart Grids. Future Generation Computer Systems 28 (2):391–404. doi:10.1016/j.future.2011.04.014.
  • Joonsang, B., Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang. 2015. A secure cloud computing based framework for big data information management of smart grid. IEEE Transactions on Cloud Computing 3 (2):233–244. doi:10.1109/TCC.2014.2359460.
  • Jordehi, A. R. 2016. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Conversion and Management 129:262–274. doi:10.1016/j.enconman.2016.09.085.
  • Kang, H.-K., I.-Y. Chung, and S. Moon. 2015. Voltage control method using distributed generators based on a multi-agent system. Energies 8 (12):14009–14025. doi:10.3390/en81212411.
  • Kang, J., R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain. 2017. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Transactions on Industrial Informatics 13 (6):3154–3164. doi:10.1109/TII.2017.2709784.
  • Karapetyan, A., M. Khonji, C. K. Chau, K. Elbassioni, and H. Zeineldin. 2016. Efficient algorithm for scalable event-based demand response management in microgrids. IEEE Transactions on Smart Grid 9 (4):1–12. doi:10.1109/TSG.2016.2616945.
  • Kato, T., A. Tokuhara, Y. Ushifusa, A. Sakurai, K. Aramaki, and F. Maruyama. 2016. Consumer responses to critical peak pricing: Impacts of maximum electricity-saving behavior. The Electricity Journal 29 (2):12–19. doi:10.1016/j.tej.2016.02.002.
  • Khan, B. Z., A. M. A. Haidar, and A. Othman. 2018. Contingency analysis of a power grid with the participation of utility-scale solar PV units: A case study from Sarawak, Malaysia. IEEE International Conference on Power and Energy, 6. doi:10.1109/PECON.2018.8684063.
  • Khaqqi, K. N., J. J. Sikorski, K. Hadinoto, and M. Kraft. 2018. Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application. Applied Energy 209:8–19. doi:10.1016/j.apenergy.2017.10.070.
  • Kumar, Y. V. P., and R. Bhimasingu. 2015. Review and retrofitted architectures to form reliable smart microgrid networks for urban buildings. IET Networks 4 (6):338–349. doi:10.1049/iet-net.2015.0023.
  • Kumar, S., N. Das, and S. Islam. 2015. High performance communication redundancy in a digital substation based on IEC 62439-3 with a station bus configuration. Australasian Universities Power Engineering Conference, Wollongong, NSW, Australia, 1–5.
  • Kunwar, A., and R. C. Bansal. 2016. Effect of high-voltage direct current link on small signal stability of a power system with different penetration level of doubly fed induction generator and direct drive synchronous generator based wind farms. International Journal of Green Energy 13 (4):335–343. doi:10.1080/15435075.2014.961464.
  • Kyriakopoulos, G. L., and G. Arabatzis. 2016. Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews 56:1044–1067. doi:10.1016/j.rser.2015.12.046.
  • Lee, Y., J. R. Paredes, and S. H. Lee. 2012. Smart Grid and Its Application in Sustainable Cities. Technical Note/No. IDB-TN-446. Inter-American Development Bank.
  • Li, Z., S. Bahramirad, A. Paaso, M. Yan, and M. Shahidehpour. 2019. Blockchain for decentralized transactive energy management system in networked microgrids. The Electricity Journal Special Issue on Strategies for a Sustainable, Reliable and Resilient Grid 32:58–72. doi:10.1016/j.tej.2019.03.008.
  • Li, M., and H. Lin. 2015. Design and implementation of smart home control systems based on wireless sensor networks and power line communications. IEEE Transactions on Industrial Electronics 62 (7):4430–4442. doi:10.1109/TIE.2014.2379586.
  • Li, V., and G. Yang. 2012. Potential methods for sensor and actuator networks for smart grid. In Smart grid communications and networking, ed. E. Hossain; Z. Han, and H. Poor, pp. 303–323. Cambridge: Cambridge University Press.
  • Liu, C., K. K. Chai, X. Zhang, E. T. Lau, and Y. Chen. 2018. Adaptive blockchain-based electric vehicle participation scheme in smart grid platform. IEEE Access 6:25657–25665. doi:10.1109/ACCESS.2018.2835309.
  • Liu, N., M. Cheng, X. Yu, J. Zhong, and J. Lei. 2018. Energy-Sharing provider for PV prosumer clusters: A hybrid approach using stochastic programming and stackelberg game. IEEE Transactions on Industrial Electronics 65 (8):6740–6750. doi:10.1109/TIE.2018.2793181.
  • Liu, W., S. Niu, and H. Xu. 2017. Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system. Journal of Modern Power Systems and Clean Energy 5 (2):177–186. doi:10.1007/s40565-016-0197-4.
  • Liu, N., J. Wang, and L. Wang. 2019. Hybrid energy sharing for multiple microgrids in an integrated heat–electricity energy system. IEEE Transactions on Sustainable Energy 10 (3):1139–1151. doi:10.1109/TSTE.2018.2861986.
  • Luo, F., Z. Y. Dong, G. Liang, J. Murata, and Z. Xu. 2019. A distributed electricity trading system in active distribution networks based on multi-agent coalition and blockchain. IEEE Transactions on Power Systems 34 (5):4097–4108. doi:10.1109/TPWRS.2018.2876612.
  • Mahmood, A., N. Javaid, and S. Razzaq. 2015. A review of wireless communications for smart grid. Renewable and Sustainable Energy Reviews 41:248–260. doi:10.1016/j.rser.2014.08.036.
  • Manbachi, M., and M. Ordonez. 2019. AMI-Based energy management for islanded AC/DC microgrids utilizing energy conservation and optimization. IEEE Transactions on Smart Grid 10 (1):293–304. doi:10.1109/TSG.2017.2737946.
  • Maria, L. D. S., P. Gallo, J. M. Guerrero, R. Musca, E. R. Sanseverino, G. Sciumè, J. C. Vasquez, and G. Zizzo. 2020. Blockchain for power systems: Current trends and future applications. Renewable and Sustainable Energy Reviews 119:109585. doi:10.1016/j.rser.2019.109585.
  • Marzband, M., F. Azarinejadian, M. Savaghebi, and J. M. Guerrero. 2017. An optimal energy management system for islanded microgrids based on multi-period artificial bee colony combined with Markov chain. IEEE Systems Journal 11 (3):1712–1722. doi:10.1109/JSYST.2015.2422253.
  • Merlinda, A., V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum, and A. Peacock. 2019. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews 100:143–174. doi:10.1016/j.rser.2018.10.014.
  • Minxian, X., and R. Buyya. 2020. Managing renewable energy and carbon footprint in multi-cloud computing environments. Journal of Parallel and Distributed Computing 135:191–202. doi:10.1016/j.jpdc.2019.09.015.
  • Mollah, B. M., J. Zhao, D. Niyato, K.-Y. Lam, X. Zhang, A. M. Y. Ghias, L. H. Koh, and L. Yang. 2021. Blockchain for future smart grid: A comprehensive survey. IEEE Internet of Things Journal 8 (1):18–43. doi:10.1109/JIOT.2020.2993601.
  • Mousa, M., S. Abdelwahed, and J. Kluss. 2019. Review of fault types, impacts, and management solutions in smart grid systems. Smart Grid and Renewable Energy 10 (04):98–117. doi:10.4236/sgre.2019.104007.
  • Musleh, A. S., G. Yao, and S. M. Muyeen. 2019. Blockchain applications in smart grid-review and frameworks. IEEE Access 7:86746–86757. doi:10.1109/ACCESS.2019.2920682.
  • Narottam, D., W. Ma, and S. Islam. 2015. Analysis of end-to-end delay characteristics for various packets in IEC 61850 substation communications system. Proceedings of the Australasian Universities Power Engineering Conference, 27–30. doi: 10.1109/AUPEC.2015.7324831.
  • Naveen, V. S., and V. Sugumaran. 2021. Fault diagnosis of visual faults in photovoltaic modules: A review. International Journal of Green Energy 0:1–16. doi:10.1080/15435075.2020.1825443.
  • Ndamulelo, M., and B. Bekker. 2019. Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics. Renewable and Sustainable Energy Reviews 108:441–451 . doi:10.1016/j.rser.2019.03.045.
  • Nima, N., S. Najafi-Ravadanegh, and A. Khodaei. 2017. Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Applied Energy 198:267–279. doi:10.1016/j.apenergy.2017.04.071.
  • Noor, S., W. Yang, M. Guo, K. H. van Dam, and X. Wang. 2018. Energy demand side management within micro-grid networks enhanced by blockchain. Applied Energy 228:1385–1398. doi:10.1016/j.apenergy.2018.07.012.
  • Nunna, K. H. S. V. S., S. Battula, S. Doolla, and D. Srinivasan. 2018. Energy management in smart distribution systems with vehicle-to-grid integrated microgrids. IEEE Transactions on Smart Grid 9 (5):4004–4016. doi:10.1109/TSG.2016.2646779.
  • Nwulu, N. I., and X. Xia. 2017. Optimal dispatch for a microgrid incorporating renewables and demand response. Renewable Energy 101:16–28. doi:10.1016/j.renene.2016.08.026.
  • Olivella-Rosell, P., E. Bullich-Massagué, M. Aragüés-Peñalba, A. Sumper, S. Ottesen, J. Vidal-Clos, and R. Villafáfila-Roblesa. 2018. Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources. Applied Energy 210:881–895. doi:10.1016/j.apenergy.2017.08.136.
  • Parinaz, A., B. Mohammadi-Ivatloo, M. Alipour, M. Abapour, and K. Zare. 2018. Optimal scheduling of plug-in electric vehicles and renewable micro-grid in energy and reserve markets considering demand response program. Journal of Cleaner Production 186:293–303. doi:10.1016/j.jclepro.2018.03.058.
  • Patti, E., A. L. A. Syrri, M. Jahn, P. Mancarella, A. Acquaviva, and E. Macii. 2016. Distributed software infrastructure for general purpose services in smart grid. IEEE Transactions on Smart Grid 7 (2):1156–1163. doi:10.1109/TSG.2014.2375197.
  • Pinto, T., H. Morais, T.M. Sousa, T. Sousa, Z. Vale, I. PraçPraçA, R. Faia, and E. J. S. Pires. 2016. Adaptive portfolio optimization for multiple electricity markets participation. IEEE Transactions on Neural Networks and Learning Systems 27 (8):1720–1733 . doi:10.1109/TNNLS.2015.2461491.
  • Pourmousavi, S. A., H. Nehrir, and R. K. Sharma. 2015. Multi-Timescale power management for islanded microgrids including storage and demand response. IEEE Transactions on Smart Grid 6 (3):1185–1195. doi:10.1109/TSG.2014.2387068.
  • Rajeeva, T., and S. Ashok. 2015. Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources. Applied Energy 146:141–149. doi:10.1016/j.apenergy.2015.02.014.
  • Rehmani, M. H., M. Reisslein, A. Rachedi, M. Erol-Kantarci, and M. Radenkovic. 2018. Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Transactions on Industrial Informatics 14 (7):2814–2825. doi:10.1109/TII.2018.2819169.
  • Ricardo, F., T. Pinto, Z. Vale, and J. M. Corchado. 2019. Hybrid approach based on particle swarm optimization for electricity markets participation. Energy Informatics 2 (1):1–16. doi:10.1186/s42162-018-0066-7.
  • Sabzehgar, R., M. A. Kazemi, M. Rasouli, and P. Fajri. 2020. Cost optimization and reliability assessment of a microgrid with large-scale plug-in electric vehicles participating in demand response programs. International Journal of Green Energy 17 (2):127–136. doi:10.1080/15435075.2019.1700125.
  • Safamehr, H., and A. Rahimi-Kian. 2015. A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program. Energy 91:283–293. doi:10.1016/j.energy.2015.08.051.
  • Saint-Pierre, A., and P. Mancarella. 2017. Active distribution system management: A dual-horizon scheduling framework for DSO/tso interface under uncertainty. IEEE Transactions on Smart Grid 8 (5):2186–2197. doi:10.1109/TSG.2016.2518084.
  • Saman, Z., S. Javaid, N. Javaid, M. Ashraf, F. Ishmanov, and M. K. Afzal. 2018. Cloud–fog–based smart grid model for efficient resource management. Sustainability 10:1–21. doi:10.3390/su10062079.
  • Saurav, M. S. B., H. Aburub, and W. Jewell. 2019. Residential demand response program: Predictive analytics, virtual storage model and its optimization. Journal of Energy Storage 23:183–194. doi:10.1016/j.est.2019.02.024.
  • Shad, M., A. Momeni, R. Errouissi, C. P. Diduch, M. E. Kaye, and L. Chang. 2017. Identification and estimation for electric water heaters in direct load control programs. IEEE Transactions on Smart Grid 8 (2):947–955. doi:10.1109/TSG.2015.2492950.
  • Shafie-Khah, M., and P. A. Siano. 2018. Stochastic home energy management system considering satisfaction cost and response fatigue. IEEE Transactions on Industrial Informatics 14 (2):629–638. doi:10.1109/TII.2017.2728803.
  • Shayeghi, H., and S. Asefi. 2017. Optimal energy management in a microgrid applying renewable sources and demand response. Proceedings of the 5th Iranian Conference on Renewable Energy & Distributed Generation, Guilan, Iran, 1–6.
  • Shen, J., C. Jiang, Y. Liu, and J. Qian. 2016. A microgrid energy management system with demand response for providing grid peak shaving. Electrical Power Components and Systems 44 (8):1–10. doi:10.1080/15325008.2016.1138344.
  • Shengrong, B., F. R. Yu, and P. X. Liu. 2014. Distributed unit commitment scheduling in the future smart grid with intermittent renewable energy resources and stochastic power demands. International Journal of Green Energy. doi:10.1080/15435075.2014.893874.
  • Sheraz, A., Z. Iqbal, N. Javaid, Z. A. Khan, K. Aurangzeb, and S. I. Haider. 2017. Towards efficient energy management of smart buildings exploiting heuristic optimization with real time and critical peak pricing schemes. Energies 10 (12):1–25. doi:10.3390/en10122065.
  • Shuo, W., X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. 2017. A survey on mobile edge networks: Convergence of computing caching and communications. IEEE Access 5:6757–6779. doi:10.1109/ACCESS.2017.2685434.
  • Siano, P. 2014. Demand response and smart grids – a survey. Renewable and Sustainable Energy Reviews 30:461–478. doi:10.1016/j.rser.2013.10.022.
  • Siddiqui, I. F., S.-U.-J. Lee, A. Abbas, and A. K. Bashir. 2017. Optimizing lifespan and energy consumption by smart meters in green-cloud-based smart grids. IEEE Access 5:20934–20945. doi:10.1109/ACCESS.2017.2752242.
  • Simon, K., F. Potratz, P. Goergens, and M. Cramer. 2017. Automated smart grid planning considering flexibility options and voltage regulating assets. IET CIRED - Open Access Proceedings Journal 2017:2122–2126. doi:10.1049/oap-cired.2017.0831.
  • Sirviö, K. H., H. Laaksonen, K. Kauhaniemi, and N. Hatziargyriou. 2021. Evolution of the electricity distribution networks-active management architecture schemes and microgrid control functionalities. Applied Sciences 11 (6):2–38. doi:10.3390/app11062793.
  • Sofana, S. R., and V. Ramesh. 2016. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm. Ain Shams Engineering Journal 7 (2):835–845. doi:10.1016/j.asej.2015.12.004.
  • Søren, D., J. Z. Thellufsen, and P. Sorknæs. 2018. The electricity market in a renewable energy system. Energy 162:148–157. doi:10.1016/j.energy.2018.07.100.
  • Stefano, R., M. Pasetti, E. Sisinni, F. Bonafini, P. Ferrari, M. Rizzi, and A. Flammini. 2018. On the mobile communication requirements for the demand-side management of electric vehicles. Energies 11 (5):1–27. doi:10.3390/en11051220.
  • Stefano, G., A. Scaglione, and Z. Wang. 2010. Power line communications and the smart grid. IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 303–308.
  • Su, Z., Y. Wang, Q. Xu, M. Fei, Y.-C. Tian, and N. Zhang. 2019. A secure charging scheme for electric vehicles with smart communities in energy blockchain. IEEE Internet of Things Journal 6 (3):4601–4613. doi:10.1109/JIOT.2018.2869297.
  • Sun, W., S. Ma, I. Alvarez-Fernandez, R. R. Nejad, and A. Golshani. 2018. Optimal self-healing strategy for microgrid islanding. IET Smart Grid 1 (4):143–150. doi:10.1049/iet-stg.2018.0057.
  • Syed, A. A. K., M. K. Shahzad, A. Z. Khan, and D. R. Shin. 2017. Smart distribution networks: A review of modern distribution concepts from a planning perspective. Energies 10 (501):2–47. doi:10.3390/en10040501.
  • Tan, S., D. De, W. Song, J. Yang, and S. K. Das. 2017. Survey of security advances in smart grid: A data driven approach. IEEE Communications Surveys & Tutorials 19 (1):397–422. doi:10.1109/COMST.2016.2616442.
  • Thakur, S., and S. Vig. 2017. Distributed generation technologies, cost analysis and power quality issues in India. Indian Journal of Science and Technology 10 (44):1–7. doi:10.17485/ijst/2017/v10i44/120580.
  • Thomas, D., G. Dʻ-Hoop, O. Deblecker, K. N. Genikomsakis, and C. S. Ioakimidis. 2020. An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes. Applied Energy 260:114314. doi:10.1016/j.apenergy.2019.114314.
  • Tonello, A. M., S. D. Alessandro, F. Versolatto, and C. Tornelli. 2011. Comparison of narrow-band OFDM PLC solutions and I-UWB modulation over distribution grids. IEEE Proceedings on Smart Grid Communication, Brussels, Belgium, 149–154.
  • Trivino-Cabrera, A., J. A. Aguado, and S. Torre. 2019. Joint routing and scheduling for electric vehicles in smart grids with V2G. Energy 175:113–122. doi:10.1016/j.energy.2019.02.184.
  • Uribe-Pérez, N., I. Angulo, D. D. L. Vega, T. Arzuaga, I. Fernández, and A. Arrinda. 2017. Smart grid applications for a practical implementation of IP over narrowband power line communications. Energies 10 (11):1–16. doi:10.3390/en10111782.
  • Venayagamoorthy, G. K., R. K. Sharma, P. K. Gautam, and A. Ahmadi. 2016. Dynamic energy management system for a smart microgrid. IEEE Transactions on Neural Networks and Learning Systems 27 (8):1643–1656. doi:10.1109/TNNLS.2016.2514358.
  • Wang, Z., B. Chen, J. Wang, and J. Kim. 2016. Decentralized energy management system for networked microgrids in grid-connected and islanded modes. IEEE Transactions on Smart Grid 7 (2):1097–1105. doi:10.1109/TSG.2015.2427371.
  • Wang, C., Y. Liu, X. Li, L. Guo, L. Qiao, and H. Lu. 2016. Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system. Energy 97:90–104. doi:10.1016/j.energy.2015.12.099.
  • Wazid, M., A. K. Das, N. Kumar, and J. C. Rodrigues. 2017. Secure three-factor user authentication scheme for renewable-energy-based smart grid environment. IEEE Transactions on Industrial Informatics 13 (6):3144–3153. doi:10.1109/TII.2017.2732999.
  • Wu, T.-F., Y.-H. Huang, and T.-H. Lin. 2018. Multi-Function high-power converters for smart-grid applications. E3S Web of Conferences Green Energy and Smart Grids, Irkutsk, Russia, 1–5.
  • Xi, F., D. Yang, and G. Xue. 2013. Evolving smart grid information management cloudward: A cloud optimization perspective. IEEE Transactions on Smart Grid 4 (1):111–119. doi:10.1109/TSG.2012.2230198.
  • Xian, W., Y. Zhang, S. Zhang, X. Li, and L. Wu. 2019. Equilibrium analysis of electricity markets with microgrids based on distributed algorithm. IEEE Access 7:119823–119834. doi:10.1109/ACCESS.2019.2936944.
  • Xiangyu, C., K. Leung, A. Y. S. Lam, and D. J. Hill. 2019. Online scheduling for hierarchical vehicle-to-grid system: Design, formulation, and algorithm. IEEE Transactions on Vehicular Technology 68 (2):1302–1317. doi:10.1109/TVT.2018.2887087.
  • Xiaolin, A., M. Á. Moreno, and J. Usaola. 2017. Aggregatorsʻ optimal bidding strategy in sequential day-ahead and intraday electricity spot markets. Energies 10 (450):1–20. doi:10.3390/en10040450.
  • Xu, Y., and Z. Li. 2015. Distributed optimal resource management based on the consensus algorithm in a microgrid. IEEE Transactions on Industrial Electronics 62 (4):2584–2592. doi:10.1109/TIE.2014.2356171.
  • Yaghmaee, M. H., A. Leon-Garcia, and M. Moghaddassian. 2018. On the performance of distributed and cloud-based demand response in smart grid. IEEE Transactions on Smart Grid 9 (5):5403–5417. doi:10.1109/TSG.2017.2688486.
  • Yakubu, T., K. Gamage, and D. Lund. 2015. Performance evaluation of wireless mesh network routing protocols for smart grid ami networks. Proceedings of IEICE Information and Communication Technology Forum, Manchester, UK, 1–6.
  • Yeming, D., Y. Gao, H. Gao, and H. Zhu. 2017. Real-Time pricing scheme based on stackelberg game in smart grid with multiple power retailers. Neurocomputing 260:149–156. doi:10.1016/j.neucom.2017.04.027.
  • Yu, M., and S. H. Hong. 2016. Supply–demand balancing for power management in smart grid: A stackelberg game approach. Applied Energy 164:702–710. doi:10.1016/j.apenergy.2015.12.039.
  • Yu, M., R. Lu, and S. H. Hong. 2016. A real-time decision model for industrial load management in a smart grid. Applied Energy 183:1488–1497. doi:10.1016/j.apenergy.2016.09.021.
  • Yulong, J., Z. Mi, Y. Yu, Z. Song, L. Liu, and C. Sun. 2019. Purchase bidding strategy for load agent with the incentive-based demand response. IEEE Access 8:58626–58637. doi:10.1109/ACCESS.2019.2915105.
  • Zhang, W., and Y. Xu. 2019. Distributed optimal control for multiple microgrids in a distribution network. IEEE Transactions on Smart Grid 10 (4):3765–3779. doi:10.1109/TSG.2018.2834921.
  • Zhao, B., X. Wang, D. Lin, M. M. Calvin, J. C. Morgan, R. Qin, and C. Wang. 2018. Energy management of multiple microgrids based on a system of systems architecture. IEEE Transactions on Power Systems 33 (6):6410–6421. doi:10.1109/TPWRS.2018.2840055.
  • Zhao, B., M. Xue, X. Zhang, C. Wang, and J. Zhao. 2015. An MAS based energy management system for a stand-alone microgrid at high altitude. Applied Energy 143:251–61. doi:10.1016/j.apenergy.2015.01.016.
  • Zhitao, G., J. Li, L. Wu, Y. Zhang, J. Wu, and X. Du. 2017. Achieving efficient and secure data acquisition for cloud-supported internet of things in smart grid. IEEE Internet of Things Journal 4 (6):1934–1944. doi:10.1109/JIOT.2017.2690522.
  • Zhiyi, L., M. Shahidehpour, and X. Liu. 2018. Cyber-Secure decentralized energy management for IoT-enabled active distribution networks. Journal of Modern Power Systems and Clean Energy 6 (5):900–917. doi:10.1007/s40565-018-0425-1.
  • Zhu, L., F. R. Yu, B. Ning, and T. Tang. 2013. Optimal charging control for plug-in electric vehicles in smart microgrids fueled by renewable energy sources. International Journal of Green Energy 10 (9):924–943. doi:10.1080/15435075.2012.727364.
  • Zijian, C., J. Lin, C. Wan, Y. Song, Y. Zhang, and X. Wang. 2017. Optimal cloud computing resource allocation for demand side management in smart grid. IEEE Transactions on Smart Grid 8 (4):1943–1955. doi:10.1109/TSG.2015.2512712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.