453
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Solar photovoltaic system under partial shading and perspectives on maximum utilization of the shaded land

& ORCID Icon
Pages 378-389 | Received 29 Jul 2021, Accepted 28 Jan 2022, Published online: 21 Mar 2022

References

  • Ahmad, R., A.F. Murtaza, H. Ahmed Sher, U. Tabrez Shami, and S. Olalekan. 2017. An analytical approach to study partial shading effects on PV array supported by literature. Renewable and Sustainable Energy Reviews 74:721–32. doi:10.1016/j.rser.2017.02.078.
  • Alonso-García, M.C., J.M. Ruiz, and F. Chenlo. 2006. Experimental study of mismatch and shading effects in the I–V characteristic of a photovoltaic module. Solar Energy Materials and Solar Cells 90 (3):329–40. doi:10.1016/j.solmat.2005.04.022.
  • Appelbaum, J., and J. Bany. 1979. Shadow effect of adjacent solar collectors in large scale systems. Solar Energy 23 (6):497–507. doi:10.1016/0038-092X(79)90073-2.
  • Bai, J., Y. Cao, Y. Hao, Z. Zhang, S. Liu, and F. Cao. 2015. Characteristic output of PV systems under partial shading or mismatch conditions. Solar Energy 112:41–54. doi: 10.1016/j.solener.2014.09.048.
  • Barreiro, C., P.M. Jansson, A. Thompson, and J.L. Schmalzel. 2011. PV by-pass diode performance in landscape and portrait modalities, 2011 37th IEEE Photovoltaic Specialists Conference, 19-24 Jun. 2011, Seattle, WA, USA. pp. 003097–102. doi: 10.1109/PVSC.2011.6186599.
  • Bharadwaj, P., and V. John, Subcell modelling of partially shaded solar photovoltaic panels, 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 1-5 Oct. 2017, Cincinnati, OH, USA, 2017, pp. 4406–13. doi:10.1109/ECCE.2017.8096758.
  • Bidram, A., A. Davoudi, and R.S. Balog. 2012. Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE Journal of Photovoltaics 2 (4):532–46. doi:10.1109/JPHOTOV.2012.2202879.
  • Bingöl, O., and B. Özkaya. 2018. Analysis and comparison of different PV array configurations under partial shading conditions. Solar Energy 160:336–43. doi:10.1016/j.solener.2017.12.004.
  • Brecl, K., and M. Topič. 2011. Self-Shading losses of fixed free-standing PV arrays. Renewable Energy 36 (11):3211–16. doi:10.1016/j.renene.2011.03.011.
  • Chanchangi, Y.N., A. Ghosh, S. Sundaram, and T.K. Mallick. 2020.An analytical indoor experimental study on the effect of soiling on PV, focusing on dust properties and PV surface material. Solar Energy 203:46–68. doi:10.1016/j.solener.2020.03.089.
  • Dolara, A., G.C. Lazaroiu, S. Leva, and G. Manzolini. 2013. Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55:466–75. doi: 10.1016/j.energy.2013.04.009.
  • Dolara, A., G.C. Lazaroiu, and E. Ogliari. 2016. Efficiency analysis of PV power plants shaded by MV overhead lines. International Journal of Energy and Environmental Engineering 7 (2):115–23. doi:10.1007/s40095-016-0208-2.
  • Eltamaly, A.M. 2021. An improved Cuckoo Search Algorithm for maximum power point tracking of photovoltaic systems under partial shading conditions. Energies 14 (4):953. doi:10.3390/en14040953.
  • Eltamaly, A.M., H.M.H. Farh, and A.G. Abokhalil. 2020. A novel PSO strategy for improving dynamic change partial shading photovoltaic maximum power point tracker. Energy Sources, Part A: Recovery, Utilization, andEnvironmental Effects 1–15. doi:10.1080/15567036.2020.1769774.
  • Gu, W., T. Ma, L. Shen, M. Li, Y. Zhang, and W. Zhang. 2019. Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions. Energy 188:116043. doi: 10.1016/j.energy.2019.116043.
  • Javed, K., H. Ashfaq, and R. Singh. 2020. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. International Journal of Green Energy 17 (1):48–61. doi:10.1080/15435075.2019.1686001.
  • Javed, M.S., T. Ma, J. Jurasz, F.A. Canales, S. Lin, S. Ahmed, and Y. Zhang. 2021. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island. Renewable Energy 164:1376–94. doi: 10.1016/j.renene.2020.10.063.
  • Javed, M.S., A. Song, and T. Ma. 2019. Techno-Economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy 176:704–17. doi:10.1016/j.energy.2019.03.131.
  • Kawamura, H., K. Naka, N. Yonekura, S. Yamanaka, H. Kawamura, H. Ohno, and K. Naito. 2003. Simulation of I–V characteristics of a PV module with shaded PV cells. Solar Energy Materials and Solar Cells 75 (3):613–21. doi:10.1016/S0927-0248(02)00134-4.
  • Kazemian, A., A. Salari, A. Hakkaki-Fard, and T. Ma. 2019. Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Applied Energy 238:734–46. doi:10.1016/j.apenergy.2019.01.103.
  • Kermadi, M., Z. Salam, A.M. Eltamaly, J. Ahmed, S. Mekhilef, C. Larbes, and E.M. Berkouk. 2020. Recent developments of MPPT techniques for PV systems under partial shading conditions: A critical review and performance evaluation. IET Renewable Power Generation 14 (17):3401–17. doi:10.1049/iet-rpg.2020.0454.
  • Kim, J.P., H. Lim, J.H. Song, Y.J. Chang, and C.H. Jeon. 2011. Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation. Solar Energy Materials and Solar Cells 95 (1):404–07. doi:10.1016/j.solmat.2010.05.016.
  • Lo Brano, V., A. Orioli, G. Ciulla, and A. Di Gangi. 2010. An improved five-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells 94 (8):1358–70. doi:10.1016/j.solmat.2010.04.003.
  • Ma, T., W. Gu, L. Shen, and M. Li. 2019. An improved and comprehensive mathematical model for solar photovoltaic modules under real operating conditions. Solar Energy 184:292–304. doi:10.1016/j.solener.2019.03.089.
  • Ma, T., M. Li, and A. Kazemian. 2020. Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously. Applied Energy 261:114380. doi:10.1016/j.apenergy.2019.114380.
  • Ma, T., H. Yang, and L. Lu. 2014. Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. Solar Energy 100:31–41. doi:10.1016/j.solener.2013.12.003.
  • Mamia, I., and J. Appelbaum. 2016. Shadow analysis of wind turbines for dual use of land for combined wind and solar photovoltaic power generation. Renewable and Sustainable Energy Reviews 55:713–18. doi:10.1016/j.rser.2015.11.009.
  • Meteonorm software. Accessed Aug 10th, 2021. https://meteonorm.com/.
  • Ministry of Housing and Urban-rural Development of the Peoples Republic of China. 2012. Code for design of photovoltaic power station (GB 50797-2012). Beijing: China Planning Press.
  • Nicolás-Martín, C., P. Eleftheriadis, and D. Santos-Martín. 2020. Validation and self-shading enhancement for SoL: A photovoltaic estimation model. Solar Energy 202:386–408. doi:10.1016/j.solener.2020.03.099.
  • Nnamchi, S.N., M.M. Mundu, J.D. Busingye, and J.U. Ezenwankwo. 2019. Extrinsic modeling and simulation of helio-photovoltaic system: A case of single diode model. International Journal of Green Energy 16 (6):450–67. doi:10.1080/15435075.2019.1578659.
  • Olalla, C., C. Deline, and D. Maksimovic. 2014. Performance of mismatched PV systems with submodule integrated converters. IEEE Journal of Photovoltaics 4 (1):396–404. doi:10.1109/JPHOTOV.2013.2281878.
  • Pendem, S.R., and S. Mikkili. 2018. Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. Solar Energy 160:303–21. doi:10.1016/j.solener.2017.12.010.
  • Prince Winston, D., S. Kumaravel, B. Praveen Kumar, and S. Devakirubakaran. 2020. Performance improvement of solar PV array topologies during various partial shading conditions. Solar Energy 196:228–42. doi: 10.1016/j.solener.2019.12.007.
  • PVSYST software. Accessed 9th Dec 2019. https://www.pvsyst.com/
  • Rizzo, S.A., and G. Scelba. 2021. A hybrid global MPPT searching method for fast variable shading conditions. Journal of Cleaner Production 298:126775. doi: 10.1016/j.jclepro.2021.126775.
  • Robledo, J., J. Leloux, E. Lorenzo, and C.A. Gueymard. 2019. From video games to solar energy: 3D shading simulation for PV using GPU. Solar Energy 193:962–80. doi: 10.1016/j.solener.2019.09.041.
  • Robles–campos, H.R., B.J. Azuaje–berbecí, C.J. Scheller, A. Angulo, and F. Mancilla–david. 2019. Detailed modeling of large scale photovoltaic power plants under partial shading conditions. Solar Energy 194:485–98. doi:10.1016/j.solener.2019.10.043.
  • Roger, J.A., and C. Maguin. 1982. Photovoltaic solar panels simulation including dynamical thermal effects. Solar Energy 29 (3):245–56. doi:10.1016/0038-092X(82)90210-9.
  • Saint-Drenan, Y.M., and T. Barbier. 2019. Data-Analysis and modelling of the effect of inter-row shading on the power production of photovoltaic plants. Solar Energy 184:127–47. doi: 10.1016/j.solener.2019.03.086.
  • Salari, A., A. Kazemian, T. Ma, A. Hakkaki-Fard, and J. Peng. 2020. Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis. Energy Conversion and Management 205:112384. doi: 10.1016/j.enconman.2019.112384.
  • Silvestre, S., A. Boronat, and A. Chouder. 2009. Study of bypass diodes configuration on PV modules. Applied Energy 86 (9):1632–40. doi:10.1016/j.apenergy.2009.01.020.
  • Solórzano, J., and M.A. Egido. 2014. Hot-Spot mitigation in PV arrays with distributed MPPT (DMPPT). Solar Energy 101:131–37. doi:10.1016/j.solener.2013.12.020.
  • Sun, Y., S. Chen, L. Xie, R. Hong, and H. Shen. 2014. Investigating the impact of shading effect on the characteristics of a large-scale grid-connected PV power plant in Northwest China. International Journal of Photoenergy 2014:9. doi:10.1155/2014/763106.
  • Tang, S., Y. Xing, L. Chen, X. Song, and F. Yao. 2021. Review and a novel strategy for mitigating hot spot of PV panels. Solar Energy 214:51–61. doi:10.1016/j.solener.2020.11.047.
  • Teo, J.C., R.H.G. Tan, V.H. Mok, V.K. Ramachandaramurthy, and C. Tan. 2019. Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions. Energy. 191:116491. doi: 10.1016/j.energy.2019.116491.
  • Tian, H., F. Mancilla-David, K. Ellis, E. Muljadi, and P. Jenkins. 2012. A cell-to-module-to-array detailed model for photovoltaic panels. Solar Energy 86 (9):2695–706. doi:10.1016/j.solener.2012.06.004.
  • Varga, N., and M.J. Mayer. 2021. Model-Based analysis of shading losses in ground-mounted photovoltaic power plants. Solar Energy 216:428–38. doi:10.1016/j.solener.2021.01.047.
  • Vengatesh, R.P., and S.E. Rajan. 2016. Analysis of PV module connected in different configurations under uniform and non-uniform solar radiations. International Journal of Green Energy 13 (14):1507–16. doi:10.1080/15435075.2016.1207078.
  • Visa, I., A. Duta, M. Moldovan, B. Burduhos, and M. Neagoe. 2020. Solar Energy Conversion Systems in the Built Environment. Green Energy and Technology. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-030-34829-8.
  • Yin, O.W., and B.C. Babu. 2018. Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions. Optik 169:48–61. doi: 10.1016/j.ijleo.2018.05.037.
  • Zhang, Q., and Q. Li. 2012. Temperature and reverse voltage across a partially shaded Si PV cell under hot spot test condition. 2012 38th IEEE Photovoltaic Specialists Conference, 3-8 Jun. 2012. Austin, TX, USA. pp. 001344–47. doi:10.1109/PVSC.2012.6317849.
  • Zhang, Y., J. Su, C. Zhang, Z. Lang, M. Yang, and T. Gu. 2021. Performance estimation of photovoltaic module under partial shading based on explicit analytical model. Solar Energy 224:327–40. doi:10.1016/j.solener.2021.06.019
  • Ziar, H., B. Asaei, S. Farhangi, M. Korevaar, O. Isabella, and M. Zeman. 2017. Quantification of shading tolerability for photovoltaic modules. IEEE Journal of Photovoltaics 7 (5):1390–99. doi:10.1109/JPHOTOV.2017.2711429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.