1,087
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Hydrogen storage based micro-grid: A comprehensive review on technology, energy management and planning techniques

ORCID Icon & ORCID Icon
Pages 445-463 | Received 22 Nov 2021, Accepted 01 Mar 2022, Published online: 19 Mar 2022

References

  • Abedin, A. H. 2011. A critical review of thermochemical energy storage systems. The Open Renewable Energy Journal 4 (1):42–46. doi:10.2174/1876387101004010042.
  • Abu-Taha, R. 2011. Multi-criteria applications in renewable energy analysis: A literature review. Portland international center for management of engineering and technology July 31–August 4, 2011, Portland, Oregon, USA, 1–8.
  • Ahlgren, P., and E. Handberg. 2018. System performance analysis of an isolated microgrid with renewable energy sources and a battery and hydrogen storage system. Report no. 5400. Industrial Electrical Engineering and Automation, Lund university libraries.
  • Ahshan, R., and L. Kounis 2020 . Reliability and maintenance an overview of cases. Microgrid System Reliability IntechOpen. ISBN: 978-1-78923-952-2. doi:10.5772/intechopen.86357.
  • Akbari-Dibavar, A., M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, and A. Anvari-Moghaddam. 2020. Optimal robust energy management of microgrid with fuel cells, hydrogen energy storage units and responsive loads. 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 1–6. doi:10.1109/SEST48500.2020.9203215.
  • Alam, M., K. Kumar, and V. Dutta. 2020. Design and economic evaluation of low voltage DC microgrid based on hydrogen storage. International Journal of Green Energy. doi:10.1080/15435075.2020.1831506.
  • Ali, T., M. Hongzhong, and A. J. Nahian. 2019. An analysis of the renewable energy technology selection in the Southern Region of Bangladesh using a hybrid Multi-Criteria Decision Making (MCDM) method. International Journal of Renewable Energy Research 9:1838–48. https://doi.org/10.20508/ijrer.v9i4.9859.g7826
  • Ali, L., S. M. Muyeen, H. Bizhani, and A. Ghosh. 2020. Optimal planning of clustered microgrid using a technique of cooperative game theory. Electric Power Systems Research 183 (2020):106262. doi:10.1016/j.epsr.2020.106262.
  • Amrouche, S. O., D. Rekioua, T. Rekioua, and S. Bacha. 2016. Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy 41 (45):20914–27. doi:10.1016/j.ijhydene.2016.06.243.
  • Anderson, A. A., and S. Suryanarayanan. 2020. Review of energy management and planning of islanded microgrids. CSEE Journal of Power and Energy Systems 6 (2):329–43. doi:10.17775/CSEEJPES.2019.01080.
  • Andersson, J., and S. Grönkvist. 2019. Large-Scale storage of hydrogen. Journal of Hydrogen Energy 44 (23):11901–19. doi:10.1016/j.ijhydene.2019.03.063.
  • Arif, M. T., A. M. T. Oo, and A. B. M. S. Ali. 2013. Investigation of energy storage systems, its advantage and requirement in various locations in Australia. Journal of Renewable Energy 2013:1–15. doi:10.1155/2013/835309.
  • Assis, A. V., and S. F. Pinto 2022 . Energy storage system as a solution to mitigate power quality issues.Fenix.Tecnico.Ulisboa.Pt.https://fenix.tecnico.ulisboa.pt/downloadFile/844820067123869/Artigo%20Catarina.pdf
  • Azim, R. 2015. A decision tree based approach for microgrid islanding detection. 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, 1–5. doi:10.1109/ISGT.2015.7131809.
  • Baghaee, H. R., M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi. 2018. Decentralized sliding mode control of WG/PV/FC Microgrids under unbalanced and nonlinear load conditions for on- and off-grid modes. IEEE Systems Journal 12 (4):3108–19. doi:10.1109/JSYST.2017.2761792.
  • Basak, P., S. Chowdhury, S. Halder Nee Dey, and S. Chowdhury. 2012. A literature review on integration of distributed energy resources in the perspective of control, protection and stability of micro-grid. Renewable and Sustainable Energy Reviews 16 (8):5545–56. doi:10.1016/j.rser.2012.05.043.
  • Bhattacharya, A., J. Kharoufeh, and B. Zeng. 2018. Managing energy storage in microgrids: A multistage stochastic programming approach. IEEE Transactions on Smart Grid 9 (1):483–96. doi:10.1109/TSG.2016.2618621.
  • Bidi, F. K., C. Damour, D. Grondin, M. Hilairet, and M. Benne. 2019. Optimal fuel cell and electrolyser energy management system for microgrid. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2197–202. doi:10.1109/IECON.2019.8926738.
  • Bocklisch, T. 2015. Hybrid energy storage systems for renewable energy applications. Energy Procedia 73:103–11. doi:10.1016/j.egypro.2015.07.582.
  • Bohra, S., S. 2019. AHP-assisted multi-criteria decision-making model for planning of microgrids. IECON 2019 - 45th Annual Conference of IEEE International Electronic Social 1:4557–4562 doi:10.1109/IECON.2019.8926887.
  • Bornapour, M., R. Hooshmand, A. Khodabakhshian, and M. Parastegari. 2017. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage. Applied Energy 202:308–22. doi:10.1016/j.apenergy.2017.05.133.
  • Bornapour, M., R. Hooshmand, A. Khodabakhshian, and M. Parastegari. 2017. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement. Energy Conversion and Management 150:725–41. doi:10.1016/j.enconman.2017.08.041.
  • Cau, G., D. Cocco, and M. Petrollese. 2014. Modeling and simulation of an isolated hybrid micro-grid with hydrogen production and storage. Energy Procedia 45:12–21. doi:10.1016/j.egypro.2014.01.003.
  • Cau, G., D. Cocco, M. Petrollese, S. K. Kær, and C. Milan. 2014. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Conversion and Management 87: 820–31. ISSN 0196-8904. doi:10.1016/j.enconman.2014.07.078.
  • Cavallaro, F. 2009. Multi criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy 34 (7):1678–85. ISSN 0960-1481. doi:10.1016/j.renene.2008.12.034.
  • Chedid, R., H. Akiki, and S. Rahman. 1998. A decision support technique for the design of hybrid solar-wind power systems. IEEE Transactions on Energy Conversion 13 (1):76–83. doi:10.1109/60.658207.
  • Chedid, R., and Y. Saliba. 1996. Optimization and control of autonomous renewable energy system. International Journal of Energy Research 20:609–24. doi:10.1002/(SICI)1099-114X(199607)20:7<609:AID-ER176>3.0.CO;2-O.
  • Chen, S. X., H. B. Gooi, and M. Q. Wang. 2012. Sizing of energy storage for microgrids. IEEE Transactions on Smart Grid 3 (1):142–51. doi:10.1109/TSG.2011.2160745.
  • Chettibi, N., A. Mellit, G. Sulligoi, and A. Massi Pavan. 2018. Adaptive neural network-based control of a hybrid AC/DC microgrid. IEEE Transactions on Smart Grid 9 (3):1667–79. doi:10.1109/TSG.2016.2597006.
  • Cingoz, F., A. Elrayyah, and Y. Sozer. 2016. Optimized resource management for PV–fuel-cell-based microgrids using load characterizations. IEEE Transactions on Industry Applications 52 (2):1723–35. doi:10.1109/TIA.2015.2499287.
  • Daim, T., T. Oliver, and J. Kim. 2013. Research and technology management in the electricity industry: Methods, tools and case studies. Green Energy Technol 60:17–31. doi:10.1007/978-1-4471-5097-8.
  • Dawood, F., and G. M. Shafiullah. 2020. Stand-alone micro-grid with 100 % renewable energy : A case study with hybrid solar PV-Battery-hydrogen. Sustainability 12:2047. doi:10.3390/su12052047.
  • Dawoud, S. M., X. Lin, and M. I. Okba. 2018. Hybrid renewable microgrid optimization techniques : A review. Renewable and Sustainable Energy Reviews 82 (September 2017):2039–52. doi:10.1016/j.rser.2017.08.007.
  • De Aguiar, C. R., G. H. F. Fuzato, R. Q. Machado, and J. M. Guerrero. 2020. An adaptive power sharing control for management of DC microgrids powered by fuel cell and storage system. IEEE Transactions on Industrial ElectronicIEEE Transactions on Industrial Electronics 67 (5):3726–35. doi:10.1109/TIE.2019.2916312.
  • Dufo-López, R., L. José, B. Agustín, and J. Contreras. 2007. Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renewable Energy 32 (7):1102–26. ISSN 0960-1481. doi:10.1016/j.renene.2006.04.013.
  • Ehsan, S., and M. A. Wahid. 2016. Hydrogen production from renewable and sustainable energy resources : Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 57:850–66. doi:10.1016/j.rser.2015.12.112.
  • EL-Shimy, M., Afandi, A. N. Oct. 2017. Overview of Power-to-Hydrogen-to-Power (P2H2P) systems based on variable renewable sources. Conference on ICEEIE 2017, Malang, Indonesia.
  • Enescu, D., G. Chicco, R. Porumb, and G. Seritan. 2020. Thermal energy storage for grid applications: Current status and emerging trends. Energies 13 (2):340. doi:10.3390/en13020340.
  • Escobar, G., P. Mattavelli, A. M. Stanković, A. A. Valdez, and J. Leyva-Ramos. 2007. An adaptive control for UPS to compensate unbalance and harmonic distortion using a combined capacitor/load current sensing. IEEE Transactions on Industrial Electronics 54 (2):839–47. doi:10.1109/TIE.2007.891998.
  • Eun-Kyu, L., S. Wenbo, G. Rajit, and K. Wooseong. 2016. Design and implementation of a microgrid energy management system. Sustainability 8 (11):1143. doi:10.3390/su8111143.
  • Faisal, M., M. Hannan, P. Ker, A. Hussain, M. Mansor, and F. Blaabjerg. 2018. Review of energy storage system technologies in microgrid applications: Issues and challenges. IEEE Access 6:35143–64. doi:10.1109/ACCESS.2018.2841407.
  • Felseghi, R., E. Carcadea, M. Raboaca, C. Trufin, and C. Filote. 2019. Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies 12 (23):4593. doi:https://doi.org/10.3390/en12234593.
  • Ferahtia, S., A. Djerioui, S. Zeghlache, and A. Houari. 2020. A hybrid power system based on fuel cell, photovoltaic source and supercapacitor. SN Applied Sciences 2 (5). doi:10.1007/s42452-020-2709-0.
  • Fernanda, M., and H. Madsen. 2018. Energy management system to overcome -intermittence - of hybrid systems - based on wind, solar, and fuel cells, smart micro-grids. Intechopen. doi:10.5772/intechopen.76760.
  • Fu, Q., A. Hamidi, A. Nasiri, V. Bhavaraju, S. Krstic, and P. Theisen. 2013. The role of energy storage in a microgrid concept: Examining the opportunities and promise of micro-grids. IEEE Electrification Magazine 1 (2):21–29. doi:10.1109/MELE.2013.2294736.
  • Gamarra, C., and J. M. Guerrero. 2015. Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews 48:413–24. doi:10.1016/j.rser.2015.04.025.
  • Gao, D., D. Jiang, P. Liu, Z. Li, S. Hu, and H. Xu. 2014. An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power. Energy 66:332–41. doi:10.1016/j.energy.2014.01.095.
  • García Vera, Y. E., R. Dufo-López, and J. L. Bernal-Agustín. 2019. Energy management in microgrids with renewable energy sources: A literature review. Applied Sciences 9:3854. doi:https://doi.org/10.3390/app9183854.
  • Ghazanfari, A., M. Hamzeh, H. Mokhtari, and H. Karimi. 2012. Active power management of multihybrid fuel cell/spsoupercapacitor power conversion system in a medium voltage microgrid. IEEE Transactions on Smart Grid 3 (4):1903–10. doi:10.1109/TSG.2012.2194169.
  • Gong, X., F. Dong, and M. A. Mohamed. 2020. A secured energy management architecture for SmartSmart hybrid microgrids considering PEM-fuel cell and electric vehicles. IEEE Access 8:47807–23. doi:10.1109/ACCESS.2020.2978789.
  • González, E. L., F. I. Llerena, M. S. Pérez, F. R. Iglesias, and J. G. Macho. 2015. Energy evaluation of a solar hydrogen storage facility: Comparison with other electrical energy storage technologies. International Journal of Hydrogen Energy 40 (15):5518–25. doi:10.1016/j.ijhydene.2015.01.181.
  • Götz, M., J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb. 2016. Renewable power-to-gas: A technological and economic review. Renewable Energy 85: 1371–90. ISSN 0960-1481. doi:10.1016/j.renene.2015.07.066.
  • Guo, Y., G. Li, J. Zhou, and Y. Liu. 2019. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conference Series: Earth and Environmental Science 371 (4):042022. doi:10.1088/1755-1315/371/4/042022.
  • Guoping, Z., W. Weijun, and M. Longbo. 2018. An Overview of Microgrid Planning and Design Method. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 326–29. doi:10.1109/IAEAC.2018.8577763.
  • Han, Y., G. Zhang, Q. Li, Z. You, W. Chen, and H. Liu. 2019. Hierarchical energy management for PV/hydrogen/battery island DC microgrid. International Journal of Hydrogen Energy 44 (11):5507–16. ISSN 0360-3199. doi:https://doi.org/10.1016/j.ijhydene.2018.08.135.
  • Hanna, R., V. Disfani, H. Haghi, D. Victor, and J. Kleissl. 2019. Improving estimates for reliability and cost in microgrid investment planning models. Journal of Renewable and Sustainable Energy 11 (4):045302. doi:10.1063/1.5094426.
  • Hatziargyriou, N. 2013. Micro-Grids: Architectures and control. Microgrids Archit. Control 1–317. doi:10.1002/9781118720677.
  • Homayouni, F., R. Roshandel, and A. A. Hamidi. 2017. Sizing and performance analysis of standalone hybrid photovoltaic/battery/hydrogen storage technology power generation systems based on the energy hub concept. International Journal of Green Energy 14 (2):121–34. doi:10.1080/15435075.2016.1233423.
  • Huang, C. 2013. Neural network based microgrid voltage control. Theses and Dissertations. 118. https://dc.uwm.edu/etd/118.
  • İ̇nci, M., O. Türksoy. 2019. Review of fuel cells to grid interface: Configurations, technical challenges and trends. Journal of Cleaner Production 213:1353–70, ISSN 0959-6526. doi:10.1016/j.jclepro.2018.12.281.
  • Ionescu, L., N. Bizon, A. Mazare, and N. Belu. 2020. Reducing the cost of electricity by optimizing real-time consumer planning using a new genetic algorithm-based strategy. Mathematics 8 (7):1144. doi:https://doi.org/10.3390/math8071144.
  • Jafar, M., H. Moghaddam, A. Kalam, and S. Arabi. 2019. Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm. Renewable Energy 135:1412–34. doi:10.1016/j.renene.2018.09.078.
  • Jahangir, H., A. Ahmadian, and M. A. Golkar. 2015. Optimal design of stand-alone microgrid resources based on proposed Monte-Carlo simulation. 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), Bangkok, Thailand, 1–6. doi:10.1109/ISGT-Asia.2015.7387137.
  • Jung, S., and Y. T. Yoon. 2019. Optimal operating schedule for energy storage system: Focusing on efficient energy management for micro-grid. Processes 7 (2):1–25. doi:10.3390/pr7020080.
  • Kafetzis, A., C. Ziogou, K. D. Panopoulos, S. Papadopoulou, P. Seferlis, and S. Voutetakis. 2020. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renewable and Sustainable Energy Reviews 134 (July):110118. doi:10.1016/j.rser.2020.110118.
  • Kanchev, H., D. Lu, F. Colas, V. Lazarov, and B. Francois. 2011. Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Transactions on Industrial Electronics 58 (10):4583–92. doi:10.1109/TIE.2011.2119451.
  • Karki, R. S., and S. Chanana. 2016. Energy management system for local energy market in micro-grid consisting fuel cell. 7th India International Conference on Power Electronics (IICPE), Patiala, India, 1–6. doi:10.1109/IICPE.2016.8079376.
  • Kaya, İ., M. Colak, and F. Terzi. 2019. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews 24:207–28. doi:10.1016/j.esr.2019.03.003.
  • Kharel, S., and B. Shabani. 2018. Hydrogen as a long-term large-scale energy storage solution to support renewables. Energies 11:2825. doi:10.3390/en11102825.
  • Kirthiga, M. V., S. A. Daniel, and S. Gurunathan. 2013. A methodology for transforming an existing distribution network into a sustainable autonomous micro-grid. IEEE Transactions on Sustainable Energy 4 (1):31–41. doi:10.1109/TSTE.2012.2196771.
  • Kolios, A., V. Mytilinou, and E. Lozano-Minguez. 2016. A comparative study of multiple-criteria decision-making methods under stochastic inputs. 1–21. doi:10.3390/en9070566.
  • Kumar, S. S., and V. Himabindu. 2019. Materials science for energy technologies hydrogen production by PEM water electrolysis – a review. Materials Science Energy and Technology 2 (3):442–54. doi:10.1016/j.mset.2019.03.002.
  • Kumar, A., B. Sah, Y. Deng, X. He, P. Kumar, and R. C. Bansal. 2017. Application of multi-criteria decision analysis tool for design of a sustainable microgrid for a remote village in the Himalayas, 2108–13. doi:10.1049/joe.2017.0702.
  • Kumar, A., B. Sah, A. R. Singh, Y. Deng, X. He, and P. Kumar. 2017. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. 69: 596–609. doi:10.1016/j.rser.2016.11.191.
  • Kumar, A., and S. K. Shukla. 2015. A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 74:462–69. doi:10.1016/j.egypro.2015.07.728.
  • Lazzerini, B., and F. Pistolesi. 2013. Efficient energy dispatching in smart microgrids using an integration of fuzzy AHP and TOPSIS assisted by linear programming. 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13), Atlantis Press, SP, 350, SN-1951-6851. doi:10.2991/eusflat.2013.50.
  • Lazzerini, B., and F. Pistolesi. 2015. A linear programming-driven MCDM approach for multi-objective economic dispatch in smart grids. 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 475–84. doi:10.1109/IntelliSys.2015.7361183.
  • Li, J., J. Y. Chung, J. Xiao, J. W. K. Hong, and R. Boutaba. 2011. On the design and implementation of a home energy management system. Int. Symp. Wirel. Pervasive Comput. ISWPC 2011. doi:10.1109/ISWPC.2011.5751338.
  • Li, Z., Z. Zheng, L. Xu, and X. Lu. 2019. A review of the applications of fuel cells in microgrids: Opportunities and challenges. BMC Energy 1 (1). doi:10.1186/s42500-019-0008-3.
  • Lin, J. 2 Nov 2020, 13:54. Energy storage, green hydrogen: The zero-carbon seasonal energy storage solution. Accessed December 13, 2020. https://www.energy-storage.news/blogs/green-hydrogen-the-zero-carbon-seasonal-energy-storage-solution.
  • Llanos, J., R. Morales, A. Núñez, D. Sáez, M. Lacalle, L. G. Marín, R. Hernández, and F. Lanas. 2017. Load estimation for microgrid planning based on a self-organizing map methodology. Applied Soft Computing 53: 323–35. ISSN 1568-4946. doi:10.1016/j.asoc.2016.12.054.
  • Logenthiran, T., D. Srinivasan, A. M. Khambadkone, and T. S. Raj. 2012. Optimal sizing of distributed energy resources for integrated microgrids using evolutionary strategy. 2012 IEEE Congr. Evol. Comput. CEC 2012, 10–15. doi:10.1109/CEC.2012.6256143.
  • Ma, Y., and M. Zhai. 2020. Day-ahead prediction of microgrid electricity demand using a hybrid artificial intelligence model. Processes 2019 (7):320. doi:10.3390/pr7060320.
  • Mao, M., P. Jin, Y. Zhao, F. Chen, and L. Chang. 2013. Optimal allocation and economic evaluation for industrial PV microgrid. 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, Vol. 2013, 4595–602. doi:10.1109/ECCE.2013.6647316.
  • Marcelino, C. 2019. A combined optimization and decision making approach for battery supported HMGS. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 69–70. doi:10.1080/01605682.2019.1582590
  • Marino, C., M. A. Quddus, M. Marufuzzaman, M. Cowan, and A. Bednar. 2018. E.: A chance-constrained two-stage stochastic programming model for reliable microgrid operations under power demand uncertainty. Sustainable Energy, Grids and Networks 13:66–77. doi:10.1016/j.segan.2017.12.007.
  • Martín, J. I., I. Zamora, F. J. Asensio, J. Garcia-Villalobos, and J. J. Martín. 2013. Control and management of a fuel cell microgrid. Energy efficiency optimization. Renewable Energy and Power Quality Journal 314–19. doi:10.24084/repqj11.290.
  • Masters, G. M. 2004. Renewable and efficient electric power systems. Hoboken, New Jersey: John Wiley & Sons, Inc.
  • Mei, S., Y. Wang, F. Liu, X. Zhang, and Z. Sun. 2012. Game approaches for hybrid power system planning. IEEE Transactions on Sustainable Energy 3 (3):506–17. doi:10.1109/TSTE.2012.2192299.
  • Mina-Casaran, J. D., D. F. Echeverry, C. A. Lozano, and A. Navarro-Espinosa. 2021. On the value of community association for microgrid development: Learnings from Multiple deterministic and stochastic planning designs. Applied Sciences 11 (14):6257. doi:https://doi.org/10.3390/app11146257.
  • Mittelstaedt, J. D., C. J. Shultz, W. E. Kilbourne, and M. Peterson. 2014. Sustainability as megatrend: Two schools of macromarketing thought. Journal of Macromarketing 34 (3):253–64. doi:10.1177/0276146713520551.
  • Mohseni, S., A. C. Brent, D. Burmester, and W. N. Browne. 2021. Lévy-Flight moth-flame optimisation algorithm-based microgrid equipment sizing: An integrated investment and operational planning approach. Energy and AI 3: 100047. ISSN 2666-5468. doi:10.1016/j.egyai.2021.100047.
  • Montenegro, A. R., M. Sanjuan, and M. Carmona. 2019. Energy storage development using hydrogen and its potential application in Colombia. International Journal of Energy Economics and Policy 9:254–68. doi:10.32479/ijeep.8294.
  • Moradzadeh, A., S. Zakeri, M. Shoaran, B. Mohammadi-Ivatloo, and F. Mohammadi. 2020. Short-term load forecasting of micro-grid via hybrid support vector regression and long short-term memory algorithms. Sustainability 12 (17):7076. doi:https://doi.org/10.3390/su12177076.
  • Moravej, Z., and H. Afshar. 2014. Optimal planning of microgrid using multi criteria decision analysis. International Journal of Multidisciplinary Sciences and Engineering 5 (8):1–6.
  • Moutis, P., S. Skarvelis-Kazakos, and M. Brucoli. 2016. Decision tree aided planning and energy balancing of planned community microgrids. Applied Energy 161: 197–205. ISSN 0306-2619. doi:10.1016/j.apenergy.2015.10.002.
  • Murty, V. V. S. N., and A. Kumar. 2020. Multi-Objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems 5 (1). doi:https://doi.org/10.1186/s41601-019-0147-z.
  • Naeem, A., and N. U. Hassan 2020. Renewable energy intermittency mitigation in microgrids: State-of-the-art and future prospects. 2020 4th International Conference on Green Energy and Applications (ICGEA), Singapore, 158–64. doi:10.1109/ICGEA49367.2020.239699.
  • Naidu, B. R., G. Panda, and P. Siano. 2018. A self-reliant DC micro-grid: Sizing, control, adaptive dynamic power management, and experimental analysis. IEEE Transactions on Industrial Informatics 14 (8):3300–13. doi:10.1109/TII.2017.2780193.
  • Narayan, A., and K. Ponnambalam. 2017. Risk-Averse stochastic programming approach for microgrid planning under uncertainty. Renewable Energy 101:399–408. doi:10.1016/j.renene.2016.08.064.
  • Nazaripouya, H., Y. Chung, and A. Akhil. 2019. Energy storage in microgrids: Challenges, application and research need. International Journal of Energy and Smart Grid 3 (2):60–70. doi:10.23884/ijesg.2018.3.2.02.
  • Niaz, S., T. Manzoor, and H. Pandith. 2015. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews 50:457–69. doi:10.1016/j.rser.2015.05.011.
  • Obara, S., M. Kawai, O. Kawae, and Y. Morizane. 2013. Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics. Applied Energy 102:1343–57. doi:10.1016/j.apenergy.2012.07.005.
  • Oueslati, F. 2021. Hybrid renewable system based on solar wind and fuel cell energies coupled with diesel engines for Tunisian climate: TRNSYS simulation and economic assessment. International Journal of Green Energy 18 (4):402–23. doi:10.1080/15435075.2020.1865366.
  • Paliwal, P., N. Patidar, and R. Nema. 2014. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using particle swarm optimization. Renewable Energy 63:194–204. doi:10.1016/j.renene.2013.09.003.
  • Paliwal, P., N. Patidar, and R. Nema. 2014. A novel method for reliability assessment of autonomous PV-wind-storage system using probabilistic storage model. International Journal of Electrical Power & Energy Systems 55:692–703. doi:10.1016/j.ijepes.2013.10.010.
  • Papadopoulos, A., and A. Karagiannidis. 2008. Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems. Omega 36 (5):766–76. doi:10.1016/j.omega.2006.01.004.
  • Penev, M., N. Rustagi, C. Hunter, and J. Eichman. 2019. Energy storage: Days of service sensitivity analysis. Golden, CO (United States): National Renewable Energy Laboratory (NREL) Hydrogen and Fuel Cell Technical Advisory Committee.
  • Perić, M., T. Plavšić, and I. Kuzle. 2018. New approach for stochastic modelling of microgrid containing CHP. Tehnicki Vjesnik 25:354–65. doi:10.17559/TV-20170722074556.
  • PERIC’s development on AEL and PEM technology. 2017. Purification Equipment Research Institute of CSIC, China.
  • Priyadharshini, C. U., and P. Aravindan. 2015. Power quality improvement using various energy sources and energy storage system in microgrid. International Research Journal of Engineering and TechnologInternational Research Journal of Engineering and Technology 2(9):450–457. P-ISSN: 2395-0072.
  • Raghavan, A., P. Maan, and A. K. B. Shenoy. 2020. Optimization of day-ahead energy storage system scheduling in microgrid using genetic algorithm and particle swarm optimization. IEEE Access 8:173068–78. doi:10.1109/access.2020.3025673.
  • Ramanathan, R., and L. S. Ganesh. 1995. Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP. Socio-Economic Planning Sciences 29 (3):197–218. doi:10.1016/0038-0121(95)00013-C.
  • Rathore, A., and N. Patidar. 2019. Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-wind based standalone microgrid. International Journal of Electrical Power & Energy Systems 106:17–32. doi:10.1016/j.ijepes.2018.09.030.
  • Reza, M., R. Hassani, and C. Gomes. 2019. Hybrid energy management with respect to a hydrogen energy system and demand response. Int. J. Hydrogen Energy 45 (3):1499–509. doi:10.1016/j.ijhydene.2019.10.223.
  • Ronay, K., D. Bica, and C. Munteanu. 2017. Microgrid development using artificial neural network for renewable energy forecast and system control. Procedia Engineering 181: 818–823. https://doi.org/10.1016/j.proeng.2017.02.472
  • Rowe, A., and X. Li. 2001. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power Sources 102 (1–2):82–96. ISSN 0378-7753. doi:10.1016/S0378-7753(01)00798-4.
  • Salahi, S., and S. Bahramara. 2016. Modeling operation problem of micro-grids considering economical, technical and environmental issues as mixed-integer non-linear programming. International Journal of Renewable Energy Development 5 (2):139–49. doi:10.14710/ijred.5.2.139-149.
  • San Martín, J., I. Zamora, J. San Martín, V. Aperribay, and P. Eguia. 2010. Hybrid fuel cells technologies for electrical microgrids. Electric Power Systems Research 80 (9):993–1005. doi:10.1016/j.epsr.2010.01.006.
  • Sekhar, P. C., and S. Mishra. 2016. Storage free smart energy management for frequency control in a diesel-PV-Fuel cell-based hybrid AC microgrid. IEEE Transactions on Neural Networks and Learning Systems 27 (8):1657–71. doi:10.1109/TNNLS.2015.2428611.
  • Sharma, R., and S. Mishra. 2018. Dynamic Power management and control of a PV PEM fuel-cell-based standalone ac/dc microgrid using hybrid energy storage. IEEE Transactions on Industry Applications 54 (1):526–38. doi:10.1109/TIA.2017.2756032.
  • Shatnawi, M., N. Al Qaydi, and M. Aljaberi. 2018. Hydrogen-based energy storage systems: A review. 7th International IEEE Conference of Renewable Energy Research and Applications ICRERA 2018 2 (1):697–700. doi:10.1109/ICRERA.2018.8566903.
  • Shayeghi, H., E. Shahryari, M. Moradzadeh, and P. Siano. 2019. A survey on microgrid energy management considering flexible energy sources. Energies 12 (11):1–26. doi:10.3390/en12112156.
  • Siksnelyte-Butkiene, I., and E. K. Zavadskas. 2020. The assessment of renewable energy technologies in a household : A review. Energies 13 (5):1164. doi:10.3390/en13051164.
  • Song, Z., H. Hofmann, J. Li, J. Hou, X. Han, and M. Ouyang. 2014. Energy management strategies comparison for electric vehicles with hybrid energy storage system. Applied Energy 134:321–31. doi:10.1016/j.apenergy.2014.08.035.
  • Su, X., M. Han, J. M. Guerrero, and H. Sun. 2015. Microgrid stability controller based on adaptive robust total SMC. Energies 8 (3):1784–801. doi:10.3390/en8031784.
  • Sun, X., B. Liu, Y. Cai, H. Zhang, Y. Zhu, and B. Wang. 2016. Frequency‐based power management for photovoltaic/battery/fuel cell‐electrolyser stand‐alone microgrid. IET Power Electronics 9 (13):2602–10. doi:10.1049/iet-pel.2015.0663.
  • Sun, L., G. Wu, Y. Xue, J. Shen, D. Li, and D. Lee. 2018. Coordinated control strategies for fuel cell power plant in a microgrid. IEEE Transactions on Energy Conversion 33 (1):1–9. doi:10.1109/TEC.2017.2729881.
  • Thale, S., and V. Agarwal. 2012. Controller Area Network (CAN) based smart protection scheme for Solar PV, fuel cell, Ultra-Capacitor and wind energy system based microgrid. 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 580–85. doi:10.1109/PVSC.2012.6317680.
  • Tijani, A. S., N. A. B. Yusup, and A. H. A. Rahim. 2014. Mathematical modelling and simulation analysis of advanced alkaline electrolyzer system for hydrogen production. Procedia Technology 15:798–806. doi:10.1016/j.protcy.2014.09.053.
  • Tjäder, J., and A. Susanne. 2017. The role and interaction of microgrids and centralized grids the role and interaction of microgrids and centralized grids in developing modern power systems – a case review. Smart grid action network, ISGAN annex 6, task 3.
  • Tomar, D., and S. Agarwal. 2013. A survey on data mining approaches for healthcare. International Journal of Bio-Science and Bio-Technology 5 (5):241–66. doi:10.14257/ijbsbt.2013.5.5.25.
  • Tsoutsos, T., M. Drandaki, N. Frantzeskaki, E. Iosifidis, and I. Kiosses. 2009. Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy 37 (5):1587–16002009. doi:10.1016/j.enpol.2008.12.011.
  • Ulleberg, Q. 2004. The importance of control strategies in PV–hydrogen systems. Solar Energy 76 (1–3):323–29. ISSN 0038-092X. doi:10.1016/j.solener.2003.09.013.
  • Valverde, L., C. Bordons, and F. Rosa. 2016. Integration of fuel cell technologies in renewable-energy-based microgrids optimizing operational costs and durability. IEEE Transactions on Industrial Electronics 63 (1):167–77. doi:10.1109/TIE.2015.2465355.
  • Velasquez, M., and P. Hester. 2013. An analysis of multi-criteria decision making methods. International Journal of Operational Research 10 (2):56–66.
  • Vivas, F. J., A. D. Heras, F. Segura, and J. M. Andújar. 2018. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renewable and Sustainable Energy Reviews 82 (September 2017):126–55. doi:10.1016/j.rser.2017.09.014.
  • Wang, Z., J. H. Menke, F. Schäfer, M. Braun, and A. Scheidler. 2021. Approximating multi-purpose AC optimal power flow with reinforcement trained artificial neural network. Energy and AI 100133. doi:10.1016/j.egyai.2021.100133.
  • Wang, C., and M. H. Nehrir. 2008. Power management of a stand-Alone wind/photovoltaic/fuel cell energy system. IEEE Transactions on Energy Conversion 23 (3):957–67. doi:10.1109/TEC.2007.914200.
  • Waseem, E., and E. Ghaith. 2015. Modeling and Analysis of renewable PEM fuel cell system. Energy Procedia 74:87–101. doi:10.1016/j.egypro.2015.07.527.
  • Yao, L., B. Yang, H. Cui, J. Zhuang, J. Ye, and J. Xue. 2016. Challenges and progresses of energy storage technology and its application in power systems. Journal of Modern Power SJournal of Modern Power Systems and Clean Energystems and Clean EnergJournal of Modern Power Systems and Clean Energy 4 (4):519–28. doi:10.1007/s40565-016-0248-x.
  • Yoon, Y., and Y. H. Kim. 2014. Charge scheduling of an energy storage system under time-of-use pricing and a demand charge. The Scientific World Journal 2014:1–9. doi:10.1155/2014/937329.
  • You, Z., L. Wang, Y. Han, and F. Zare. 2018. System design and energy management for a fuel cell/battery hybrid forklift. Energies 11:12. doi:10.3390/en11123440.
  • Zacharia, L. 2019. Optimal energy management and scheduling of a microgrid in grid-connected and islanded modes. SEST 2019 - 2nd Int. Conference on Smart Energy System and Technology 1–6. doi:10.1109/SEST.2019.8849121.
  • Zeng, J., and W. Qiao. 2011. Support vector machine-based short-term wind power forecasting. 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, 1–8. doi:10.1109/PSCE.2011.5772573.
  • Zhang, K., J. Li, Z. He, and W. Yan. 2018. Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning. Physica A: Statistical Mechanics and Its Applications 501:356–69. doi:10.1016/j.physa.2018.02.196.
  • Zhao, H., H. Lu, B. Li, X. Wang, S. Zhang, and Y. Wang. 2020. Stochastic optimization of microgrid participating day-ahead market operation strategy with consideration of energy storage system and demand response. Energies 13 (5). doi:10.3390/en13051255.
  • Zhou, T., and B. Francois. 2009. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. International Journal of Hydrogen Energy 34 (1):21–30. doi:10.1016/j.ijhydene.2008.10.030.
  • Zhu, T., A. Mishra, D. Irwain, N. Sharma, P. Shenoy, and D. Towsley. 2011. The case for efficient renewable energy management in smart homes. Proceedings of the third ACM Workshop on Embedded Sensing Systems for Energy Efficiency in buldings, Association for Computing Machinery, New York, USA, 67–72. doi:http://doi.org/10.1145/2434020.2434042.
  • Züttel, A. 2004. Hydrogen storage methods. Naturwissenschaften 91:157–72. doi:10.1007/s00114-004-0516-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.