205
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Detailed investigation of sinusoidal vibration on triboelectric energy harvester

ORCID Icon, &
Pages 677-690 | Received 15 Jul 2021, Accepted 29 May 2022, Published online: 12 Jun 2022

References

  • Adhikari, J., A. Kumar, R. Kumar, and S. C. Jain. 2021. Performance enhancement of functionally graded piezoelectric tile by tailoring poling orientation. Mechanics Based Design of Structures and Machines 1–20. doi:10.1080/15397734.2021.1939047.
  • Baytekin, H. T., A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski. 2011. The mosaic of surface charge in contact electrification. Science 333 (6040):308–12. doi:10.1126/science.1201512.
  • Bhatia, D., W. Kim, S. Lee, S. W. Kim, and D. Choi. 2017. Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies. Nano Energy 33:515–21. doi:10.1016/j.nanoen.2017.01.059.
  • Burschka, J., N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499 (7458):316–19. doi:10.1038/nature12340.
  • Chen, J., G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T. C. Hou, and Z. L. Wang. 2013. Harmonic‐resonator‐based triboelectric nanogenerator as a sustainable power source and a self‐powered active vibration sensor. Advanced Materials 25 (42):6094–99. doi:10.1002/adma.201302397.
  • Chen, H., L. Miao, Z. Su, Y. Song, M. Han, X. Chen, X. Cheng, D. Chen, and H. Zhang. 2017. Fingertip-Inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40:65–72. doi:10.1016/j.nanoen.2017.08.001.
  • Chen, H., Y. Song, H. Guo, L. Miao, X. Chen, Z. Su, and H. Zhang. 2018. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51:496–503. doi:10.1016/j.nanoen.2018.07.001.
  • Chen, A., C. Zhang, G. Zhu, and Z. L. Wang. 2020. Polymer materials for high‐performance triboelectric Nanogenerators. Advanced Science 7 (14):2000186. doi:10.1002/advs.202000186.
  • Diaz, A. F., and R. M. Felix-Navarro. 2004. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics 62 (4):277–90. doi:10.1016/j.elstat.2004.05.005.
  • Elbanna, M. A., M. H. Arafa, and C. R. Bowen. 2020. Experimental and analytical investigation of the response of a triboelectric generator under different operating conditions. Energy Technology 8 (11):2000576. doi:10.1002/ente.202000576.
  • Fan, F. R., Z. Q. Tian, and Z. L. Wang. 2012. Flexible triboelectric generator. Nano Energy 1 (2):328–34. doi:10.1016/j.nanoen.2012.01.004.
  • Guo, Y., X. S. Zhang, Y. Wang, W. Gong, Q. Zhang, H. Wang, and J. Brugger. 2018. All-Fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48:152–60. doi:10.1016/j.nanoen.2018.03.033.
  • Horn, R. G., D. T. Smith, and A. Grabbe. 1993. Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions. Nature 366 (6454):442–43. doi:10.1038/366442a0.
  • Ibrahim, A., A. Ramini, and S. Towfighian. 2018. Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction. Journal of Sound and Vibration 416:111–24. doi:10.1016/j.jsv.2017.11.036.
  • Jiang, T., Y. Yao, L. Xu, L. Zhang, T. Xiao, and Z. L. Wang. 2017. Spring-Assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31:560–67. doi:10.1016/j.nanoen.2016.12.004.
  • Jiang, D., H. Ouyang, B. Shi, Y. Zou, P. Tan, X. Qu, S. Chao, Y. Xi, C. Zhao, Y. Fan, et al. 2020. A wearable noncontact free‐rotating hybrid nanogenerator for self‐powered electronics. InfoMat 2 (6):1191–200. doi:10.1002/inf2.12103.
  • Khorsand, M., J. Tavakoli, K. Kamanya, and Y. Tang. 2019. Simulation of high-output and lightweight sliding-mode triboelectric nanogenerators. Nano Energy 66:104115. doi:10.1016/j.nanoen.2019.104115.
  • Kumar, S., R. Kumar, W. Seemann, and S. C. Jain. 2020. Modeling and analysis of vertical contact mode triboelectric energy harvester. Integrated Ferroelectrics 212 (1):68–80. doi:10.1080/10584587.2020.1819036.
  • Kumar, S., D. Singh, R. Kumar, and S. C. Jain. 2021. No-wear vibration energy harvester based on a triboelectric mechanism. Journal of Electronic Materials 1–14.
  • Kumar, S., R. Kumar, V. Narain, and S. C. Jain. 2022. Parametric analysis of vertical contact mode triboelectric energy harvester. In Machines, mechanism and robotics, 1733–44 doi:10.1007/978-981-16-0550-5_167. Singapore: Springer.
  • Larcher, D., and J. M. Tarascon. 2015. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 7 (1):19–29. doi:10.1038/nchem.2085.
  • Li, Z., Q. Zheng, Z. L. Wang, and Z. Li. 2020. Nanogenerator-Based self-powered sensors for wearable and implantable electronics. Research, 2020.
  • Liu, Z., L. Xu, Q. Zheng, Y. Kang, B. Shi, D. Jiang, H. Li, X. Qu, Y. Fan, Z. L. Wang, et al. 2020. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 14 (7):8074–83. doi:10.1021/acsnano.0c00675.
  • Niu, S., S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, and Z. L. Wang. 2013. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy & Environmental Science 6 (12):3576–83. doi:10.1039/c3ee42571a.
  • Niu, S., and Z. L. Wang. 2015. Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–92. doi:10.1016/j.nanoen.2014.11.034.
  • Qian, Y., and D. J. Kang. 2018. Large-Area high-quality AB-stacked bilayer graphene on h-BN/Pt foil by chemical vapor deposition. ACS Applied Materials & Interfaces 10 (34):29069–75. doi:10.1021/acsami.8b06862.
  • Qian, Y., and D. J. Kang. 2018. Poly (dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation. ACS Applied Materials & Interfaces 10 (38):32281–88. doi:10.1021/acsami.8b05636.
  • Qin, Y., X. Wang, and Z. L. Wang. 2008. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451 (7180):809–13. doi:10.1038/nature06601.
  • Shinbrot, T., B. Jones, and P. Saba. 2018. Charging at a distance. Physical Review Materials 2 (11):115603. doi:10.1103/PhysRevMaterials.2.115603.
  • Wang, S., L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang. 2013. Sliding-Triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters 13 (5):2226–33. doi:10.1021/nl400738p.
  • Wang, Z. L. 2013. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7 (11):9533–57. doi:10.1021/nn404614z.
  • Wang, S., Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, and Z. L. Wang. 2014. Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: Methodology and theoretical understanding. Advanced Materials 26 (39):6720–28. doi:10.1002/adma.201402491.
  • Wang, Z. L. 2020. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68:104272. doi:10.1016/j.nanoen.2019.104272.
  • Xu, M., P. Wang, Y. C. Wang, S. L. Zhang, A. C. Wang, C. Zhang, Z. Wang, X. Pan, and Z. L. Wang. 2018. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing. Advanced Energy Materials 8 (9):1702432. doi:10.1002/aenm.201702432.
  • Yang, Y., H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen, and Z. L. Wang. 2013. Single-Electrode-Based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano 7 (8):7342–51. doi:10.1021/nn403021m.
  • Yang, J., J. Chen, Y. Liu, W. Yang, Y. Su, and Z. L. Wang. 2014. Triboelectrification-Based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8 (3):2649–57. doi:10.1021/nn4063616.
  • Yang, B., W. Zeng, Z. H. Peng, S. R. Liu, K. Chen, and X. M. Tao. 2016. A fully verified theoretical analysis of contact‐mode triboelectric nanogenerators as a wearable power source. Advanced Energy Materials 6 (16):1600505. doi:10.1002/aenm.201600505.
  • Yu, Y., and X. Wang. 2016. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mechanics Letters 9:514–30. doi:10.1016/j.eml.2016.02.019.
  • Zhao, C., Q. Zhang, W. Zhang, X. Du, Y. Zhang, S. Gong, K. Ren, Q. Sun, and Z. L. Wang. 2019. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy 57:440–49. doi:10.1016/j.nanoen.2018.12.062.
  • Zhu, G., C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, and Z. L. Wang. 2012. Triboelectric-Generator-Driven pulse electrodeposition for micropatterning. Nano Letters 12 (9):4960–65. doi:10.1021/nl302560k.
  • Zhu, G., J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. Pan, and Z. L. Wang. 2013. Linear-Grating triboelectric generator based on sliding electrification. Nano Letters 13 (5):2282–89. doi:10.1021/nl4008985.
  • Zhu, G., Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z. L. Wang. 2013. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letters 13 (2):847–53. doi:10.1021/nl4001053.
  • Zou, Y., P. Tan, B. Shi, H. Ouyang, D. Jiang, Z. Liu, H. Li, M. Yu, C. Wang, X. Qu, et al. 2019. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications 10 (1):1–10. doi:10.1038/s41467-019-10433-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.