308
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation of droplet evaporation under the dual influence of surface wettability and nucleate boiling

, , &
Pages 701-713 | Received 14 Feb 2022, Accepted 29 May 2022, Published online: 18 Jul 2022

References

  • Arkhipov, V. A., S. A. Basalaev, N. N. Zolororev, K. G. Perfil’-Eva, and A. S. Usanina. 2020. Peculiarities of droplet evaporation under radiative and convective heating. Technical Physics Letters 46 (4):378–81. doi:10.1134/S1063785020040161.
  • Bhathagar, P. L., E. P. Gross, and M. K. Krook. 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review 94 (3):511–25. doi:10.1103/PhysRev.94.511.
  • Bourges, M. C., and M. E. R. Shanahan. 1995. Influence of evaporation on contact angle. Langmuir 11 (7):2820–29. doi:10.1021/la00007a076.
  • Chang, Q., J. Iwan, and D. Alexander. 2008. Application of Lattice Boltzmann method. Germany: VDM Verlag Dr. Müller.
  • Chen, L. F., G. Li, and B. Fang. 2019. Droplet evaporation characteristics of aviation kerosene surrogate fuel and butanol blends under forced convection. International Journal of Multiphase Flow 114:229–39. doi:10.1016/j.ijmultiphaseflow.2019.03.012.
  • Cheng, H. C., T. L. Chang, and P. H. Chen. 2020. Experimental investigation of inner bubble dynamics during water droplet evaporation from heated surfaces with different roughness and wettability levels. International Journal of Heat and Mass Transfer 157:119980. doi:10.1016/j.ijheatmasstransfer.2020.11998.
  • Cho, H. J., J. P. Mizerak, and E. N. Wang. 2015. Turning bubbles on and off during boiling using charged surfactants. Nature Communications 6 (1):8599. doi:10.1038/ncomms9599.
  • Dullien, F. A. L. 1992. Porous media: Fluid transport and pore structure. New York: Academic Press.
  • Frisch, U., B. Hasslacher, and Y. Pomeau. 1986. Lattice-Gas automata for the Navier-Stokes equation. Physical Review Letters 56 (14):1505–08. doi:10.1103/PhysRevLett.56.1505.
  • Gao, M., P. Kong, and L. X. Zhang. 2018. Evaporation dynamics of different sizes sessile droplets on hydrophilic and hydrophobic heating surface under constant wall heat fluxes conditions. International Communications in Heat and Mass Transfer 93:93–99. doi:10.1016/j.icheatmasstransfer.2018.03.007.
  • Gatapova, E. Y., A. A. Semenov, D. V. Zaitsev, and O. A. Kabov. 2014. Evaporation of a sessile water drop on a heated surface with controlled wettability. Colloids & Surfaces a Physicochemical & Engineering Aspects 441:776–85. doi:10.1016/j.colsurfa.2013.05.046.
  • Gong, S., and P. Cheng. 2013. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. International Journal of Heat & Mass Transfer 64:122–32. doi:10.1016/j.ijheatmasstransfer.2013.03.058.
  • Gross, M., F. Varnik, and D. Raabe. 2009. Fall and rise of small droplets on rough hydrophobic substrates. Europhysics Letters 88 (2):26002. doi:10.1209/0295-5075/88/26002.
  • Grüer, M., D. Waugh, J. Lawrence, N. Langer, and D. Scholz. 2019. On the droplet size and application of wettability analysis for the development of ink and printing substrate. Langmuir 35 (38):1–31. doi:10.1021/acs.langmuir.9b01674.
  • Gu, X., Z. J. Hou, and J. Cai. 2021. Data-Based flooding fault diagnosis of proton exchange membrane fuel cell systems using LSTM networks. Energy and AI 4:100056. doi:10.1016/j.egyai.2021.100056.
  • Han, Y. R., S. P. Wang, R. F. Zhou, L. M. He, and X. M. Luo. 2019. The migration and adherence of oil droplets on surfaces with different wettability in a Laminar flow field. Langmuir. 9 b03456. The Langmuir 1–49.
  • Hardy, J., O. D. Pazzis, and Y. Pomeau. 1976. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions. Physical Review A 13 (2):1949–61. doi:10.1103/PhysRevA.13.1949.
  • Hartmann, M., and S. Hardt. 2019. Stability of evaporating droplets on chemically patterned surfaces. Langmuir 35 (14):4868–75. doi:10.1021/acs.langmuir.9b00172.
  • Hays, R., D. Maynes, and J. Crockett. 2016. Thermal transport to droplets on heated superhydrophobic substrates. International Journal of Heat & Mass Transfer 98:70–80. doi:10.1016/j.ijheatmasstransfer.2016.03.011.
  • Huo, S., W. Y. Shi, R. F. Wang, B. B. Lu, Y. Wang, K. Jiao, and Z. J. Hou. 2021. Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field. Science China Technological Sciences 64 (5):1041–56. doi:10.1007/s11431-020-1767-5.
  • Jiang, X., B. Y. Zhao, and L. Q. Chen. 2019. Sessile microdrop coalescence on partial wetting surfaces: Effects of surface wettability and stiffness. Langmuir 35 (40):1–25. doi:10.1021/acs.langmuir.9b02294.
  • Kadhim, M. A., N. Kapur, J. Summers, and H. Thompson. 2019. An experimental and theoretical investigation of droplet evaporation on heated hydrophilic and hydrophobic surfaces. Langmuir 35 (19):6256–66. doi:10.1021/acs.langmuir.8b03601.
  • Kang, B. C., J. Hyeon, and H. So. 2020. Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology. Applied Surface Science 499:143733. doi:10.1016/j.apsusc.2019.143733.
  • Kupershtokh, A. L. 2004. New method of incorporating a body force term into the lattice Boltzmann equation. Proceeding of the 5th International EHD Workshop, Poitiers, France.
  • Kusumaatmaja, H., and J. M. Yeomans. 2007. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23 (11):6019–32. doi:10.1021/la063218t.
  • Li, Q., K. H. Luo, and X. J. Li. 2012. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Physical Review E 86 (1):016709. doi:10.1103/PhysRevE.86.016709.
  • Li, H. N., R. Chen, X. Zhu, Q. Liao, D. D. Ye, and Y. Yang, W. Li, D. Li, Y. Yang. 2021. Droplet evaporation on a hydrophobic photothermal conversion substrate. Industrial & Engineering Chemistry Research 60 (9):3758–69. doi:10.1021/acs.iecr.1c00355.
  • Lin, Y. K., F. Q. Chu, Q. Ma, and X. M. Wu. 2021. Gyroscopic rotation of boiling droplets. Applied Physics Letters 118 (22):221601. doi:10.1063/5.0054248.
  • Lopes, M. C., and E. Bonaccurso. 2012. Evaporation control of sessile water drops by soft viscoelastic surfaces. Soft Matter 8 (30):7875. doi:10.1039/c2sm25958c.
  • Ma, Q., X. M. Wu, T. Li, and F. Q. Chu. 2019. Droplet boiling on heated surfaces with various wettabilities. Applied Thermal Engineering 167:114703. doi:10.1016/j.applthermaleng.2019.114703.
  • McHale, G., S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil. 2005. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21 (24):11053–60. doi:10.1021/la0518795.
  • Misyura, S. Y., G. V. Kuznetsov, D. V. Feoktistov, R. S. Volkov, V. S. Morozov, and E. G. Orlova. 2019. The influence of the surface microtexture on wettability properties and drop evaporation. Surface and Coatings Technology 375:458–67. doi:10.1016/j.surfcoat.2019.07.058.
  • Moghul, D., and J. C. Luxat. 2019. Energetic liquid droplet boiling on high-temperature metal surfaces. Nuclear Technology 205 (1–2):104–18. doi:10.1080/00295450.2018.1515411.
  • Mustayen, A. G. M. B., M. M. Rahman, S. Mekhilef, and R. Saidur. 2015. Performance evaluation of a solar powered air dryer for white oyster mushroom drying. International Journal of Green Energy 12 (11):1113–21. doi:10.1080/15435075.2014.891221.
  • Nasser, J., J. Lin, L. Zhang, and H. A. Sodano. 2020. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon 162:570–78. doi:10.1016/j.carbon.2020.03.002.
  • Nirgude, V. V., and S. K. Sahu. 2019. Nucleate boiling heat transfer performance of different laser processed copper surfaces. International Journal of Green Energy. doi:10.1080/15435075.2019.1686000.
  • Nota, F., R. Savino, and S. Fico. 2006. The interaction between drops and solidification front in presence of Marangoni effect. Acta Astronautica 59 (1–5):20–31. doi:10.1016/j.actaastro.2006.02.043.
  • Picknett, R. G., and R. Bexon. 1977. The evaporation of sessile or pendant drops in still air. Journal of Colloid and Interface Science 61 (2):336–50. doi:10.1016/0021-9797(77)90396-4.
  • Poudel, S., A. Zou, and S. C. Maroo. 2021. Droplet evaporation on porous nanochannels for high heat flux dissipation. ACS Applied Materials & Interfaces 13 (1):1853–60. doi:10.1021/acsami.0c17625.
  • Qu, Z. G., D. G. Li, J. Y. Huang, X. L. Xu, and W. Q. Tao, W. Q. Tao. 2012. Experimental investigations of pool boiling heat transfer on horizontal plate sintered with metallic fiber felt. International Journal of Green Energy 9 (1):22–38. doi:10.1080/15435075.2011.617019.
  • Savino, R., and S. Fico. 2004. Transient Marangoni convection in hanging evaporating drops. Physics of Fluids 16 (10):3738. doi:10.1063/1.1772380.
  • Schlenoff, J. B., S. P. Wang, R. F. Zhou, L. M. He, and X. M. Luo. 2019. 100th Anniversary of the Langmuir Isotherm: Celebrating ongoing discoveries at interfaces. Langmuir : The ACS journal of surfaces and colloids 35 (1):1–49. doi:10.1021/acs.langmuir.9b03456.
  • Shan, X., and H. Chen. 1993. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E 47 (3):1815–19. doi:10.1103/PhysRevE.47.1815.
  • Solaimuthu, C., V. Raghavan, D. Senthilkumar, and C. G. Saravanan. 2015. Experimental investigation of evaporation rate and emission studies of Madhuca Indica biodiesel and its blend with diesel. International Journal of Green Energy 12 (6):635–40. doi:10.1080/15435075.2013.871723.
  • Weaver, D. P., and B. D. Shizgal. 1994. Rarefied gas dynamics: Theory and simulations. American Institute of Aeronautics and Astronautics 450–58. doi:10.2514/4.866319.
  • Wei, M. Y., Y. Song, Y. Y. Zhu, D. J. Preston, C. S. Tan, and E. N. Wang. 2020. Heat transfer suppression by suspended droplets on microstructured surfaces. Applied Physics Letters 116 (23):233703. doi:10.1063/5.0010510.
  • Xu, C. S., N. Guo, X. Zhang, Y. L. Fu, and L. Zhou. 2020. Internal characteristic of droplet and its influence on the underwater wet welding process stability. Journal of Materials Processing Technology 280:116593. doi:10.1016/j.jmatprotec.2020.116593.
  • Xu, Z. X., J. Li, Z. H. Yao, and J. Li. 2021. Effects of superheat degree and wettability on droplet evaporation time near Leidenfrost point through Lattice Boltzmann simulation. International Journal of Thermal Sciences 167 (2):107017. doi:10.1016/j.ijthermalsci.2021.107017.
  • Yang, H. Q., S. N. Yu, and R. H. Qi. 2020. Experimental and numerical research of liquid contact angles on solid surfaces under evaporation conditions: A review. International Journal of Green Energy 18 (3):1–17. doi:10.1080/15435075.2020.1854261.
  • Yu, Y., Q. Li, C. Q. Zhou, P. Zhou, and H. J. Yan. 2017. Investigation of droplet evaporation on heterogeneous surfaces using a three-dimensional thermal multiphase lattice Boltzmann model. Applied Thermal Engineering 127:1346–54. doi:10.1016/j.applthermaleng.2017.08.158.
  • Yuan, P., L. Schaefer. 2006. Schaefer. Equations of state in a lattice Boltzmann model. Physics of Fluids 18 (4):329. doi:10.1063/1.2187070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.