352
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Co-precipitation synthesis of a CeO2−SnO2 heterostructure electrolyte of low temperature solid oxide fuel cells

ORCID Icon, , , &
Pages 744-751 | Received 24 Apr 2021, Accepted 23 Jun 2022, Published online: 07 Jul 2022

References

  • Chen, G., B. Zhu, H. Deng, Y. Luo, W. Sun, and H. Liu, W. Zhang, X. Wang, Y. Qian, X. Hu. 2018. Advanced fuel cell based on perovskite La–SrTiO 3 semiconductor as the electrolyte with superoxide-ion conduction. ACS Applied Materials & Interfaces 10 (39):33179–86. doi:10.1021/acsami.8b10087.
  • Duan, C. C., D. Hook, Y. C. Chen, J. H. Tong, and R. O’-Hayre. 2017. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500°C. Energy & Environmental Science 10 (1):176–82. doi:10.1039/C6EE01915C.
  • Fan, L. D., B. Zhu, P. C. Su, and C. X. He. 2008. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45:48–176.
  • Fan, L. D., and P. C. Su. 2016. Layer-Structured LiNi0.8co0.2o2: A new triple (H+/o2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells. Journal of Power Sources 306:369–77. doi:10.1016/j.jpowsour.2015.12.015.
  • Garino, N., A. Sacco, M. Castellino, J. Muñoz-Tabares, A. Chiodoni, V. Agostino, V. Margaria, M. Gerosa, G. Massaglia, and M. Quagl. 2016. Microwave-assisted synthesis of reduced graphene Oxide/SnO 2 nanocomposite for oxygen reduction reaction in microbial fuel cells. ACS Applied Materials & Interfaces 8 (7):4633–43. doi:10.1021/acsami.5b11198.
  • Inaba, H., and H. Tagawa. 1996. Ceria-Based solid electrolytes - Review. Solid State Ionics 83 (1):1–16. doi:10.1016/0167-2738(95)00229-4.
  • Ishihara, T., H. Matsuda, and Y. Takita. 1994. Lewis-acid assisted chiral bronsted acid for enantioselective protonation of silyl enol ethers and ketene bis(trialkylsil) acetals. Journal of the American Chemical Society 116 (9):3801. doi:10.1021/ja00088a016.
  • Lee, S., W. Zhang, F. Khatkhatay, H. Wang, Q. Jia, and J. MacManus-Driscoll. 2015. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO 2 nanocomposite films. Nano Letters 15 (11):7362–69. doi:10.1021/acs.nanolett.5b02726.
  • Liu, M., M. E. Lynch, K. F. Blinn, M. Alamgir, and Y. Choi. 2011. Rational SOFC material design: New advances and tools. Materials Today 14 (11):534. doi:10.1016/S1369-7021(11)70279-6.
  • Liu, Y., Y. Tang, Z. Ma, M. Singh, Y. He, and W. Dong, C. Sun, B. Zhu. 2015. Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell. Scientific Reports 5 (1):11946. doi:10.1038/srep11946.
  • Liu, Y., Y. Wu, W. Zhang, J. Zhang, B. Wang, and C. Xia, M. Afzal, J. Li, M. Singh, B. Zhu. 2017. Natural CuFe2O4 mineral for solid oxide fuel cells. International Journal of Hydrogen Energy 42 (27):17514–21. doi:10.1016/j.ijhydene.2017.01.039.
  • Liu, C., H. Xian, Z. Jiang, et al. 2016. Insight into the improvement effect of the Ce doping the SnO2 catalyst for the catalytic combustion of methane. Applied Catalysis B: Environmental 176:542–52.
  • Manibalan, G., G. Murugadoss, T. Thangamuthu, R. M. Kumar, R. Jayave, and M. R. Kumar. 2019. Enhanced photocatalytic performance of heterostructure CeO2–SnO2 nanocomposite via hydrothermal route. Materials Research Express 6 (7):075032. doi:10.1088/2053-1591/ab1634.
  • Meng, Y., Y. Mi, F. Xu, X. Wang, C. Xia, and W. Dong, Y. Ji, B. Zhu. 2017. Low-Temperature fuel cells using a composite of redox-stable perovskite oxide La0.7Sr0.3Cr0.5Fe0.5O3-δ and ionic conductor. Journal of Power Sources 366:259–64. doi:10.1016/j.jpowsour.2017.09.026.
  • Qiao, Z., C. Xia, Y. Cai, M. Afzal, H. Wang, J. Qiao, and B. Zhu. 2018. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power Sources 392:33–40. doi:10.1016/j.jpowsour.2018.04.096.
  • Raza, R., B. Zhu, A. Rafique, M. R. Naqvi, and P. Lund. 2020. Functional ceria-based nanocomposites for advanced low- temperature (300-600 degrees C) solid oxide fuel cell: A comprehensive review. Materials Today Energy 15:100373. doi:10.1016/j.mtener.2019.100373.
  • Shi, Q., J. H. Chen, Y. M. Xing, B. Zhu, and Y. Wu. 2019. Semiconductor heterostructure SrTiO3/CeO2 electrolyte membrane fuel cells. Journal of the Electrochemical Society 167 (5):054504. doi:10.1149/2.0082005JES.
  • Song, Z., Z. Wei, B. Wang, Z. Luo, S. Xu, W. Zhang, H. Yu, and Z. Li Huang, Z. Huang, J. Zang. 2016. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chemistry of Materials 28 (4):1205–12. doi:10.1021/acs.chemmater.5b04850.
  • Steele, B. C. H. 2000. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129 (1–4):95–110. doi:10.1016/S0167-2738(99)00319-7.
  • Wu, Y., L. Liu, X. X. Yu, J. Zhang, L. Y. Li, C. Y. Yan, and B. Zhu. 2018. Natural hematite ore composited with ZnO nanoneedles for energy applications. Composites Part B 137:178–83. doi:10.1016/j.compositesb.2017.11.020.
  • Wu, Y., J. Zhang, L. Y. Li, J. Wei, J. F. Li, and X. Yang, C. Yan, C. Zhou, B. Zhu. 2018. Proton conduction and fuel cell using the CuFe-oxide mineral composite based on CuFeO2 structure. ACS Applied Energy Materials 1 (2):580–88. doi:10.1021/acsaem.7b00137.
  • Xia, C., Y. X. Cai, Y. Ma, B. Y. Wang, W. Zhang, and M. Karlsson, Y. Wu, B. Zhu. 2016. Natural mineral-based solid oxide fuel cell with heterogeneous nanocomposite derived from hematite and rare-earth minerals. ACS Applied Materials & Interfaces 8 (32):20748–55. doi:10.1021/acsami.6b05694.
  • Xia, C., Y. Q. Mi, B. Y. Wang, B. Lin, G. Chen, and B. Zhu. 2019. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nature Communications 10 (1):1707. doi:10.1038/s41467-019-09532-z.
  • Xing, Y., Y. Wu, L. Li, Q. Shi, J. Shi, S. Yun, and B. Zhu, B. Wang, J.-S. Kim, B. Zhu. 2019. Proton shuttles in CeO2 /CeO2−δ core–shell structure. ACS Energy Letters 4 (11):2601–07. doi:10.1021/acsenergylett.9b01829.
  • Xu, R., Y. Wu, X. Y. Wang, J. Zhang, X. Yang, and B. Zhu. 2017. Enhanced ionic conductivity of yttria-stabilized ZrO2 with natural CuFe-oxide mineral heterogeneous composite for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy 42 (27):17495–503. doi:10.1016/j.ijhydene.2017.05.218.
  • Xue, D. P., Y. Wang, J. L. Gao, and Z. Y. Zhang. 2018. Hydrothermal synthesis of CeO2-SnO2 nanoflowers for improving triethylamine gas sensing property. Nanomaterials 8 (12):1025. doi:10.3390/nano8121025.
  • Zhang, X., M. Robertson, C. Deces-Petit, W. Qu, O. Kesler, and R. Maric, D. Ghosh. 2007. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. Journal of Power Sources 164 (2):668–77. doi:10.1016/j.jpowsour.2006.10.087.
  • Zhang, W., J. Zhang, R. Xu, X. Wang, X. Yang, and Y. Wu. 2017. Electricity and catholyte production from ceramic MFCs treating urine. International journal of hydrogen energy 42 (3):22185–91. doi:10.1016/j.ijhydene.2016.09.163.
  • Zhou, Y., X. F. Guan, H. Zhou, K. Ramadoss, S. Adam, and H. J. Liu, S. Lee, J. Shi, M. Tsuchiya, D. D. Fong. 2016. Strongly correlated perovskite fuel cells. Nature 534 (7606):231–37. doi:10.1038/nature17653.
  • Zhu, B., R. Raza, H. Qin, and L. Fan. 2011. Single-Component and Three-Component Fuel Cells. Journal of Power Sources 196 (15):6362–65. doi:10.1016/j.jpowsour.2011.03.078.
  • Zhu, B., P. Lund, R. Raza, Y. Ma, L. Fan, and M. Afzal, J. Patakangas, Y. He, Y. Zhao, W. Tan. 2015. Schottky junction effect on high performance fuel cells based on nanocomposite materials. Advanced Energy Materials 5 (8):1401895. doi:10.1002/aenm.201401895.
  • Zhu, B., Y. Huang, L. D. Fan, Y. Ma, B. Y. Wang, and C. Xia. 2016. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19:156–64. doi:10.1016/j.nanoen.2015.11.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.