611
Views
1
CrossRef citations to date
0
Altmetric
Review Article

CdTe solar cells fabrication and examination techniques: a focused review

, , , , , & show all
Pages 555-570 | Received 12 Jul 2022, Accepted 05 Sep 2022, Published online: 26 Sep 2022

References

  • Abdallah, B., K. Alnama, and F. Nasrallah. 2019. Deposition of ZnS thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties. Modern Physics Letters B 33 (4):1950034. doi:10.1142/S0217984919500349.
  • Aberle, A. G. 2000. Surface passivation of crystalline silicon solar cells: A review. Progress in Photovoltaics: Research and Applications 8 (5):473–87. doi:10.1002/1099-159X(200009/10)8:5<473:AID-PIP337>3.0.CO;2-D.
  • Al-Jassim, M., Y. Yan, H. Moutinho, M. Romero, R. Dhere, and K. Jones. 2001. TEM, AFM, and cathodoluminescence characterization of CdTe thin films. Thin Solid Films 387 (1–2):246–50. doi:10.1016/S0040-6090(00)01707-7.
  • Amarasinghe, M., E. Colegrove, H. Moutinho, D. Albin, J. Duenow, S. Johnston, J. Kephart, W. Sampath, M. Al-Jassim, S. Sivananthan, et al. 2018. Influence of CdTe deposition temperature and window thickness on CdTe grain size and lifetime after CdCl 2 recrystallization. IEEE Journal of Photovoltaics 8 (2):600–03. doi: 10.1109/JPHOTOV.2018.2790701.
  • Aramoto, T., S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, et al. 1997. 16.0% efficient thin-film CdS/cdte solar cells. Japanese Journal of Applied Physics 36 (10R):6304. doi: 10.1143/JJAP.36.6304.
  • Artegiani, E., D. Menossi, H. Shiel, V. Dhanak, J. D. Major, A. Gasparotto, K. Sun, A. Romeo. 2019. Analysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells. Progress in Photovoltaics: Research and Applications 27 (8):706–15.
  • Başol, B. M. 1992. Processing high efficiency CdTe solar cells. International Journal of Solar Energy 12 (1–4):25–35. doi:10.1080/01425919208909748.
  • Bialasiewicz, J. T. 2008. Renewable energy systems with photovoltaic power generators: Operation and modeling. IEEE Transactions on Industrial Electronics 55 (7):2752–58. doi:10.1109/TIE.2008.920583.
  • Bianco, G., M. Losurdo, M. M. Giangregorio, A. Sacchetti, P. Prete, N. Lovergine, P. Capezzuto, and G. Bruno. 2015. Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC Advances 5 (119):98700–08. doi:10.1039/C5RA19698A.
  • Bonilla, S., and E. A. Dalchiele. 1991. Electrochemical deposition and characterization of CdTe polycrystalline thin films. Thin Solid Films 204 (2):397–403. doi:10.1016/0040-6090(91)90078-C.
  • Bonnet, D., and P. Meyers. 1998. Cadmium-Telluride—material for thin film solar cells. Journal of Materials Research 13 (10):2740–53. doi:10.1557/JMR.1998.0376.
  • Bosio, A., S. Pasini, and N. Romeo. 2020. The history of photovoltaics with emphasis on CdTe solar cells and modules. Coatings 10 (4):344. doi:10.3390/coatings10040344.
  • Boyle, G. May, 2004. Renewable energy. In Renewable Energy, ed. G. Boyle, 456. Oxford University Press. ISBN-10: 0199261784. ISBN13: 9780199261789.. ISBN13: 9780199261789.
  • Britt, J., and C. Ferekides. 1993. Thin‐film CdS/cdte solar cell with 15.8% efficiency. Applied Physics Letters 62 (22):2851–52. doi:10.1063/1.109629.
  • Buis, C., A. Lohstroh, G. Marrakchi, C. Jeynes, and L. Verger. 2014. Effects of dislocation walls on charge carrier transport properties in CdTe single crystal. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 735:188–92. doi: 10.1016/j.nima.2013.08.084.
  • Cao, X., P. Chen, and Y. Guo. 2008. Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation. The Journal of Physical Chemistry C 112 (51):20560–66. doi:10.1021/jp806645c.
  • Çetinkaya, Ç., E. Çokduygulular, B. Kınacı, F. Güzelçimen, Y. Özen, N. A. Sönmez, and S. Özçelik. 2022. Highly improved light harvesting and photovoltaic performance in CdTe solar cell with functional designed 1D-photonic crystal via light management engineering. Scientific Reports 12 (1):1–12. doi:10.1038/s41598-022-15078-w.
  • Chandran, R., S. K. Panda, and A. Mallik. 2018. A short review on the advancements in electroplating of CuIngase 2 thin films. Materials for Renewable and Sustainable Energy 7 (2):6. doi:10.1007/s40243-018-0112-1.
  • Cheng, P., Y. Liu, S.-Y. Chang, T. Li, P. Sun, R. Wang, H.-W. Cheng, T. Huang, L. Meng, S. Nuryyeva, et al. 2019. Efficient tandem organic photovoltaics with tunable rear sub-cells. Joule 3 (2):432–42. doi: 10.1016/j.joule.2018.11.011.
  • Choi, G., J. Lee, J. Cha, Y.-J. Kim, Y.-S. Choi, M. Schulz, C. Moon, K. Lim, S. Kim, I. Kang. 2016. A spray-on carbon nanotube artificial neuron strain sensor for composite structural health monitoring. Sensors 16 (8):1171. doi: 10.3390/s16081171.
  • Cousins, P. J. and M. J. Cudzinovic. 2010. Array of small contacts for solar cell fabrication. ed: Google Patents.
  • Cruz, L., V. Falcao, C. Ferreira, W. Pinheiro, I. Mattoso, and R. Alves. 2008. Manufacturing procedures of a CdS/cdte thin film solar cell. Revista Brasileira de Aplicações de Vácuo 25 (1):15–19.
  • Dao, V.-D., and H.-S. Choi. 2016. Highly-Efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction. Nanomaterials 6 (4):70. doi:10.3390/nano6040070.
  • Dean, P. 1979. Copper, the dominant acceptor in refined, undoped zinc telluride. Journal of Luminescence 21 (1):75–83. doi:10.1016/0022-2313(79)90035-8.
  • Deivanayaki, S., P. Jayamurugan, R. Mariappan, and V. Ponnuswamy. 2010. Optical and structural characterization of CdTe thin films by chemical bath deposition technique. Chalcogenide Letters 7 (3):159–63.
  • de Moure-Flores, F., J. G. Quiñones-Galván, A. Guillén-Cervantes, J. S. Arias-Cerón, A. Hernández-Hernández, J. Santoyo-Salazar, J. Santos-Cruz, S. A. Mayén-Hernández, M. de la L Olvera, J. G. Mendoza-Álvarez, et al. 2014. CdTe thin films grown by pulsed laser deposition using powder as target: Effect of substrate temperature. Journal of Crystal Growth 386:27. doi:10.1016/j.jcrysgro.2013.09.036.
  • Diba, M., D. W. Fam, A. R. Boccaccini, and M. S. Shaffer. 2016. Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science 82:83–117. doi: 10.1016/j.pmatsci.2016.03.002.
  • Drews, D., J. Sahm, W. Richter, and D. Zahn. 1995. Molecular‐beam‐epitaxy growth of CdTe on InSb (110) monitored in situ by Raman spectroscopy. Journal of Applied Physics 78 (6):4060–65. doi:10.1063/1.359862.
  • Dupuis, V., G. Khadra, A. Hillion, A. Tamion, J. Tuaillon-Combes, L. Bardotti, and F. Tournus. 2015. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Physical Chemistry Chemical Physics 17 (42):27996–8004. doi:10.1039/C5CP00943J.
  • Elnour, O. A. M. 2016. Optical Characterization of Thick Films for Some Oxides Fabricated by Pulsed Laser Deposition. Sudan University of Science and Technology.
  • Elsheikh, A. H., S. W. Sharshir, M. K. Ahmed Ali, J. Shaibo, E. M. A. Edreis, T. Abdelhamid, C. Du, and Z. Haiou. 2019. Thin film technology for solar steam generation: A new dawn. Solar Energy 177:561–75. doi: 10.1016/j.solener.2018.11.058.
  • Enriquez, J. P., N. Mathews, G. P. Hernández, and X. Mathew. 2013. Influence of the film thickness on structural and optical properties of CdTe thin films electrodeposited on stainless steel substrates. Materials Chemistry and Physics 142 (1):432–37. doi:10.1016/j.matchemphys.2013.07.043.
  • Farrow, R., G. Jones, G. Williams, and I. Young. 1981. Molecular beam epitaxial growth of high structural perfection, heteroepitaxial CdTe films on InSb (001). Applied Physics Letters 39 (12):954–56. doi:10.1063/1.92616.
  • Feng, C., W.-J. Yin, J. Nie, X. Zu, M. N. Huda, S.-H. Wei, M. M. Al-Jassim, and Y. Yan. 2012. Possible effects of oxygen in Te-rich Σ3 (112) grain boundaries in CdTe. Solid State Communications 152 (18):1744–47. doi:10.1016/j.ssc.2012.05.006.
  • Ferekides, C., U. Balasubramanian, R. Mamazza, V. Viswanathan, H. Zhao, and D. Morel. 2004. CdTe thin film solar cells: Device and technology issues. Solar Energy 77 (6):823–30. doi:10.1016/j.solener.2004.05.023.
  • Ferekides, C., J. Britt, Y. Ma, and L. Killian. 1993. High efficiency CdTe solar cells by close spaced sublimation. Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, Louisville, 389–93. IEEE.
  • Ferekides, C. S., D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel. 2000. High efficiency CSS CdTe solar cells. Thin Solid Films 361:520–26. doi: 10.1016/S0040-6090(99)00824-X.
  • Flores-Marquez, J., M. L. Albor-Aguilera, Y. Matsumoto-Kuwabara, M. A. Gonzalez-Trujillo, C. Hernandez-Vasquez, R. Mendoza-Perez, G. S. Contreras-Puente, and M. Tufiño-Velazquez. 2015. Improving CdS/cdte thin film solar cell efficiency by optimizing the physical properties of CdS with the application of thermal and chemical treatments. Thin Solid Films 582:124–27. doi: 10.1016/j.tsf.2014.10.070.
  • Frausto-Reyes, C., J. R. Molina-Contreras, C. Medina-Gutiérrez, and S. Calixto. 2006. CdTe surface roughness by Raman spectroscopy using the 830 nm wavelength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 65 (1):51–55. doi:10.1016/j.saa.2005.07.082.
  • Fritsche, J., D. Kraft, A. Thißen, T. Mayer, A. Klein, and W. Jaegermann. 2002. Band energy diagram of CdTe thin film solar cells. Thin Solid Films 403:252–57. doi: 10.1016/S0040-6090(01)01528-0.
  • Ganesh, V., M. Alizadeh, A. Shuhaimi, A. Pandikumar, B. T. Goh, N. M. Huang, and S. A. Rahman. 2015. Investigation of the electrochemical behavior of indium nitride thin films by plasma-assisted reactive evaporation. RSC Advances 5 (22):17325–35. doi:10.1039/C4RA16258G.
  • Gerlach, G., and K. Maser. 2016. A self-consistent model for thermal oxidation of silicon at low oxide thickness. Advances in Condensed Matter Physics 2016:1–13. doi: 10.1155/2016/7545632.
  • Gessert, T. A., S.-H. Wei, J. Ma, D. S. Albin, R. G. Dhere, J. N. Duenow, D. Kuciauskas, A. Kanevce, T. M. Barnes, J. M. Burst, et al. 2013. Research strategies toward improving thin-film CdTe photovoltaic devices beyond 20% conversion efficiency. Solar Energy Materials and Solar Cells 119:149–55. doi:10.1016/j.solmat.2013.05.055.
  • Gordillo, G., J. Florez, and L. Hernandez. 1995. Preparation and characterization of CdTe thin films deposited by CSS. Solar Energy Materials and Solar Cells 37 (3–4):273–81. doi:10.1016/0927-0248(95)00020-8.
  • Gorji, N. E., U. Reggiani, and L. Sandrolini. 2015. Numerical analysis of degradation kinetics in CdTe thin films. Solar Energy 118:611–21. doi: 10.1016/j.solener.2015.05.041.
  • Green, M. A. 2007. Thin-Film solar cells: Review of materials, technologies and commercial status. Journal of Materials Science: Materials in Electronics 18 (1):15–19.
  • Green, M. A. 2009. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications 17 (3):183–89. doi:10.1002/pip.892.
  • Guo, D., T. Fang, A. Moore, D. Brinkman, R. Akis, D. Krasikov, I. Sankin, C. Ringhofer, and D. Vasileska. 2016. Numerical simulation of copper migration in single crystal CdTe. IEEE Journal of Photovoltaics 6 (5):1286–91. doi:10.1109/JPHOTOV.2016.2571626.
  • Gupta, A., V. Parikh, and A. D. Compaan. 2006. High efficiency ultra-thin sputtered CdTe solar cells. Solar Energy Materials and Solar Cells 90 (15):2263–71. doi:10.1016/j.solmat.2006.02.029.
  • Gur, I., N. A. Fromer, M. L. Geier, and A. P. Alivisatos. 2005. Air-Stable all-inorganic nanocrystal solar cells processed from solution. Science 310 (5747):462–65. doi:10.1126/science.1117908.
  • Haines, A., R. S. Kovats, D. Campbell-Lendrum, and C. Corvalán. 2006. Climate change and human health: Impacts, vulnerability and public health. Public Health 120 (7):585–96. doi:10.1016/j.puhe.2006.01.002.
  • Hallén, A., and M. Linnarsson. 2016. Ion implantation technology for silicon carbide. Surface & Coatings Technology 306:190–93. doi: 10.1016/j.surfcoat.2016.05.075.
  • Harris, K., S. Hwang, D. K. Blanks, J. W. Cook, J. F. Schetzina, N. Otsuka, J. P. Baukus, and A. T. Hunter. 1986. Characterization study of a HgTe‐cdte superlattice by means of transmission electron microscopy and infrared photoluminescence. Applied Physics Letters 48 (6):396–98. doi:10.1063/1.96563.
  • Hiner, H. C., L. Zhao, and H. Hegde. 2012. Mask for increased uniformity in ion beam deposition. ed: Google Patents.
  • Huang, X., S. Han, W. Huang, and X. Liu. 2013. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chemical Society Reviews 42 (1):173–201. doi:10.1039/C2CS35288E.
  • Hu, P., B. Li, L. Feng, J. Wu, H. Jiang, H. Yang, and X. Xiao. December 1, 2012. Effects of the substrate temperature on the properties of CdTe thin films deposited by pulsed laser deposition. Surface & Coatings Technology 213:84–89. doi:10.1016/j.surfcoat.2012.10.022.
  • Hultman, L. 2000. Thermal stability of nitride thin films. Vacuum 57 (1):1–30. doi:10.1016/S0042-207X(00)00143-3.
  • Ijaz, M., A. Shoukat, A. Ayub, H. Tabassum, H. Naseer, R. Tanveer, A. Islam, and T. Iqbal. 2020. Perovskite solar cells: Importance, challenges, and plasmonic enhancement. International Journal of Green Energy 17 (15):1022–35. doi:10.1080/15435075.2020.1818567.
  • Iqbal, T., M. Haqnawaz, M. Sultan, M. B. Tahir, M. I. Khan, K. N. Riaz, M. Ijaz, and M. Rafique. 2018. Novel graphene‐based transparent electrodes for perovskite solar cells. International Journal of Energy Research 42 (15):4866–74. doi:10.1002/er.4244.
  • Jamesh, M. I., P. Li, M. M. Bilek, R. Boxman, D. R. McKenzie, and P. K. Chu. 2015. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition. Corrosion Science 97:126–38. doi: 10.1016/j.corsci.2015.04.022.
  • Jarkov, A., S. Bereznev, O. Volobujeva, R. Traksmaa, A. Tverjanovich, A. Öpik, and E. Mellikov. 2013. Photo-Assisted electrodeposition of polypyrrole back contact to CdS/cdte solar cell structures. Thin Solid Films 535:198–201. doi: 10.1016/j.tsf.2013.01.064.
  • Johansson, T. B., A. K. Reddy, H. Kelly, R. H. Williams, and L. Burnham. 1993. Renewable energy: Sources for fuels and electricity. Island press.
  • Jung, D., J. Norman, Y. Wan, S. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers. 2019. Recent advances in inas quantum dot lasers grown on on‐axis (001) silicon by molecular beam epitaxy. Physica Status Solidi (A) 216 (1):1800602. doi:10.1002/pssa.201800602.
  • Kang, K., J. Kim, Y. Jin, and P. K. Ajmera. 2015. Low temperature carbon nanotube and hexagonal diamond deposition with photo-enhanced chemical vapor deposition. Microsystem Technologies 21 (6):1225–31. doi:10.1007/s00542-014-2163-2.
  • Karam, A. F., and G. Stremsdoerfer. 1998. A novel dynamic process for chemical reduction plating. Plating and Surface Finishing 85 (1):88–92.
  • Kartopu, G., O. Oklobia, D. Turkay, D. R. Diercks, B. P. Gorman, V. Barrioz, S. Campbell, J. D. Major, M. K. Al Turkestani, S. Yerci, et al. 2019. Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping. Solar Energy Materials and Solar Cells 194:259–67. doi:10.1016/j.solmat.2019.02.025.
  • Kathirvel, D., N. Suriyanarayanan, S. Prabahar, and S. Srikanth. 2013. Electrical properties of CdS thin films by vacuum evaporation deposition. International Journal of Physics (IJP) 1 (1):19–25.
  • Kc, D., D. K. Shah, M. S. Akhtar, M. Park, C. Y. Kim, O.-B. Yang, and B. Pant. 2021. Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26 (11):3275. doi:10.3390/molecules26113275.
  • Kc, D., D. K. Shah, A. M. Alanazi, and M. S. Akhtar. 2021. Impact of different antireflection layers on cadmium telluride (CdTe) solar cells: A PC1D simulation study. Journal of Electronic Materials 50 (4):2199–205. doi:10.1007/s11664-020-08696-5.
  • Keshav, R., and M. Mahesha. 2021. Investigation on performance of CdTe solar cells with CdS and bilayer ZnS/cds windows grown by thermal evaporation technique. International Journal of Energy Research 45 (5):7421–35. doi:10.1002/er.6325.
  • Khairnar, U., D. Bhavsar, R. Vaidya, and G. Bhavsar. 2003. Optical properties of thermally evaporated cadmium telluride thin films. Materials Chemistry and Physics 80 (2):421–27. doi:10.1016/S0254-0584(02)00336-X.
  • Kikuchi, T., D. Nakajima, O. Nishinaga, S. Natsui, and R. O. Suzuki. 2015. Porous aluminum oxide formed by anodizing in various electrolyte species. Current Nanoscience 11 (5):560–71. doi:10.2174/1573413711999150608144742.
  • Kim, J., G. Y. Kim, D.-H. Son, K.-J. Yang, D.-H. Kim, J.-K. Kang, and W. Jo. 2018. High photo-conversion efficiency Cu2ZnSn (S, Se) 4 thin-film solar cells prepared by compound-precursors and metal-precursors. Solar Energy Materials and Solar Cells 183:129–36. doi: 10.1016/j.solmat.2018.03.050.
  • Köntges, M., R. Reineke-Koch, P. Nollet, J. Beier, R. Schäffler, and J. Parisi. 2002. Light induced changes in the electrical behavior of CdTe and Cu (In, Ga) Se2 solar cells. Thin Solid Films 403:280–86. doi: 10.1016/S0040-6090(01)01507-3.
  • Kosyachenko, L., E. Grushko, and X. Mathew. 2012. Quantitative assessment of optical losses in thin-film CdS/cdte solar cells. Solar Energy Materials and Solar Cells 96:231–37. doi: 10.1016/j.solmat.2011.09.063.
  • Kranz, C., M. Ludwig, H. E. Gaub, and W. Schuhmann. 1995. Lateral deposition of polypyrrole lines by means of the scanning electrochemical microscope. Advanced Materials 7 (1):38–40. doi:10.1002/adma.19950070106.
  • Kumar, V. S. 2016. Nanocrystalline diamond films growth by microwave ECR CVD: Studies of structural and photoconduction properties. Vacuum 131:259–63. doi: 10.1016/j.vacuum.2016.07.005.
  • Kumarasinghe, P., A. Dissanayake, B. Pemasiri, and B. Dassanayake. 2017. Thermally evaporated CdTe thin films for solar cell applications: Optimization of physical properties. Materials Research Bulletin 96:188–95. doi: 10.1016/j.materresbull.2017.04.026.
  • Kumarasinghe, P., A. Dissanayake, B. Pemasiri, and B. Dassanayake. 2017. Variation of optical, structural, electrical and compositional properties of thermally evaporated CdTe thin films due to substrate temperature. Journal of Materials Science: Materials in Electronics 28 (1):276–83.
  • Kumar, N. S., and K. C. B. Naidu. 2021. A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics 7 (5):940–56. doi:10.1016/j.jmat.2021.04.002.
  • Kushitashvili, Z., A. Bibilashvili, and N. Biyikli. 2017. Properties of hafnium oxide received by ultra violet stimulated plasma anodization. IEEE Transactions on Device and Materials Reliability 17 (4):667–71. doi:10.1109/TDMR.2017.2751078.
  • Lalitha, S., R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, and K. Natarajan. 2004. Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness. Solar Energy Materials and Solar Cells 82 (1–2):187–99. doi:10.1016/j.solmat.2004.01.017.
  • Li, M., D. Liu, B. Lou, X. Hou, and P. Chen. 2016. Relationship between structural modification of aromatic-rich fraction from heavy oil and the development of mesophase microstructure in thermal polymerization process. Energy & Fuels 30 (10):8177–84. doi:10.1021/acs.energyfuels.6b01496.
  • Li, J., Y. Wang, Y. Yao, Y. Wang, and L. Wang. 2017. Structure and tribological properties of TiSicn coating on Ti6Al4V by arc ion plating. Thin Solid Films 644:115–19. doi: 10.1016/j.tsf.2017.09.053.
  • Li, Y., J. Zheng, X. Chen, C. Sun, H. Jiang, G. Li, and X. Zhang. 2021. Realize larger grain size of CH3NH3PbI3 film with reduced non-radiative recombination for high performance perovskite solar cells via precursor colloidal size engineering. Journal of Alloys and Compounds 886:161300. doi: 10.1016/j.jallcom.2021.161300.
  • Luschitz, J., B. Siepchen, J. Schaffner, K. Lakus-Wollny, G. Haindl, A. Klein, and W. Jaegermann. 2009. CdTe thin film solar cells: Interrelation of nucleation, structure, and performance. Thin Solid Films 517 (7):2125–31. doi:10.1016/j.tsf.2008.10.075.
  • Mahabaduge, H., W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, et al. 2015. High-Efficiency, flexible CdTe solar cells on ultra-thin glass substrates. Applied Physics Letters 106 (13):133501. doi: 10.1063/1.4916634.
  • Major, J., and K. Durose. 2011. Early stage growth mechanisms of CdTe thin films deposited by close space sublimation for solar cells. Solar Energy Materials and Solar Cells 95 (12):3165–70. doi:10.1016/j.solmat.2011.05.002.
  • Manimozhi, T., K. Ramamurthi, M. M. A. Sinthiya, A. Karthigeyan, P. V. Bhuvanaswari, and R. R. Babu. 2015. Effect of substrate temperature on the properties of nanocrystalline cdte thin films coated by electron beam evaporation method. International Journal of ChemTech Research 7 (2):950–57.
  • Mathew, X., J. P. Enriquez, A. Romeo, and A. N. Tiwari. 2004. CdTe/cds solar cells on flexible substrates. Solar Energy 77 (6):831–38. doi:10.1016/j.solener.2004.06.020.
  • Mathew, X., G. W. Thompsonb, V. P. Singhc, J. C. McClured, S. Velumania, N. R. Mathewsa, P. J. Sebastian. 2003. Development of CdTe thin films on flexible substrates—a review. Solar Energy Materials and Solar Cells 76 (3):293–303. doi: 10.1016/S0927-0248(02)00281-7.
  • Matin, M., M. M. Aliyu, A. H. Quadery, and N. Amin. 2010. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis. Solar Energy Materials and Solar Cells 94 (9):1496–500. doi:10.1016/j.solmat.2010.02.042.
  • McCandless, B. E., W. A. Buchanan, C. P. Thompson, G. Sriramagiri, R. J. Lovelett, J. Duenow, D. Albin, S. Jensen, E. Colegrove, J. Moseley, et al. 2018. Overcoming carrier concentration limits in polycrystalline CdTe thin films with in situ doping. Scientific Reports 8 (1):1–13. doi: 10.1038/s41598-018-32746-y.
  • McCandless, B., W. K. Metzger, W. Buchanan, G. Sriramagiri, C. Thompson, J. Duenow, D. Albin, S. A. Jensen, J. Moseley, M. Al-Jassim, et al. 2019. Enhanced p-type doping in polycrystalline CdTe films: Deposition and activation. IEEE Journal of Photovoltaics 9 (3):912–17. doi: 10.1109/JPHOTOV.2019.2902356.
  • Miyake, M., K. Murase, T. Hirato, and Y. Awakura. 2003. Electrical properties of CdTe layers electrodeposited from ammoniacal basic electrolytes. Journal of the Electrochemical Society 150 (6):C413. doi:10.1149/1.1570411.
  • Miyake, M., K. Murase, T. Hirato, and Y. Awakura. 2004. Hall effect measurements on CdTe layers electrodeposited from acidic aqueous electrolyte. Journal of Electroanalytical Chemistry 562 (2):247–53. doi:10.1016/j.jelechem.2003.09.008.
  • Morales-Acevedo, A. 2006. Can we improve the record efficiency of CdS/cdte solar cells? Solar Energy Materials and Solar Cells 90 (15):2213–20.
  • Morello, A., J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, et al. 2010. Single-Shot readout of an electron spin in silicon. Nature 467 (7316):687–91. doi: 10.1038/nature09392.
  • Moutinho, H., F. Hasoon, F. Abulfotuh, and L. Kazmerski. 1995. Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close‐spaced sublimation, and sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13 (6):2877–83. doi:10.1116/1.579607.
  • Munshi, A., A. Abbas, J. Raguse, K. Barth, W. S. Sampath, and J. Walls. 2014. Effect of varying process parameters on CdTe thin film device performance and its relationship to film microstructure. Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, Ontario, Canada, 1643–48. IEEE.
  • Nakano, R., N. Inoue, and K. Namba. 2016. Low-Oxidation plasma-assisted process. ed: Google Patents.
  • Nisha, M., K. Vanaja, K. Sanal, K. Saji, P. Aneesh, and M. Jayaraj. 2010. Growth of ITO thin films on polyimide substrate by bias sputtering. Materials Science in Semiconductor Processing 13 (1):64–69. doi:10.1016/j.mssp.2010.02.009.
  • Oladeji, I. O., L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao. 2000. Metal/cdte/cds/cd1− xZnxs/tco/glass: A new CdTe thin film solar cell structure. Solar Energy Materials and Solar Cells 61 (2):203–11. doi:10.1016/S0927-0248(99)00114-2.
  • Pandey, S., U. Tiwari, R. Raman, C. Prakash, V. Krishna, V. Dutta, and K. Zimik. 2005. Growth of cubic and hexagonal CdTe thin films by pulsed laser deposition. Thin Solid Films 473 (1):54–57. doi:10.1016/j.tsf.2004.06.157.
  • Panwar, N., S. Kaushik, and S. Kothari. 2011. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 15 (3):1513–24. doi:10.1016/j.rser.2010.11.037.
  • Patel, H., J. Rathod, K. Patel, and V. Pathak. 2012. Structural and surface studies of vacuum evaporated cadmium telluride thin films. American Journal of Materials Science and Technology 1:11–21.
  • Płaczek-Popko, E. 2017. Top PV market solar cells 2016. Opto-Electronics Review 25 (2):55–64. doi:10.1016/j.opelre.2017.03.002.
  • Punitha, K., R. Sivakumar, C. Sanjeeviraja, and V. Ganesan. 2015. Influence of post-deposition heat treatment on optical properties derived from UV–vis of cadmium telluride (CdTe) thin films deposited on amorphous substrate. Applied Surface Science 344:89–100. doi: 10.1016/j.apsusc.2015.03.095.
  • Rahman, M. M., M. R. Karim, H. F. Alharbi, B. Aldokhayel, T. Uzzaman, and H. Zahir. 2021. Cadmium selenide quantum dots for solar cell applications: A review. Chemistry–an Asian Journal 16 (8):902–21. doi:10.1002/asia.202001369.
  • Ramanathan, K. V., B. Shankar, S. V. Nair, and M. Shanmugam. 2020. Grain/grain‐boundary mediated dispersive photo‐current characteristics in close space sublimated micro‐granular CdTe films. IET Optoelectronics 14 (5):252–55. doi:10.1049/iet-opt.2019.0142.
  • Ramanathan, K., G. Teeter, J. Keane, and R. Noufi. 2005. Properties of high-efficiency CuIngase2 thin film solar cells. Thin Solid Films 480:499–502. doi: 10.1016/j.tsf.2004.11.050.
  • Ravishankar, S., C. Aranda, P. P. Boix, J. A. Anta, J. Bisquert, and G. Garcia-Belmonte. 2018. Effects of frequency dependence of the external quantum efficiency of perovskite solar cells. The Journal of Physical Chemistry Letters 9 (11):3099–104. doi:10.1021/acs.jpclett.8b01245.
  • Rife, J. L., P. Kung, R. J. Hooper, J. Allen, and G. B. Thompson. 2020. Structural and mechanical characterization of carbon fibers grown by laser induced chemical vapor deposition at hyperbaric pressures. Carbon 162:95–105. doi: 10.1016/j.carbon.2020.02.018.
  • Ringel, S., A. Smith, M. MacDougal, and A. Rohatgi. 1991. The effects of CdCl2 on the electronic properties of molecular‐beam epitaxially grown CdTe/cds heterojunction solar cells. Journal of Applied Physics 70 (2):881–89. doi:10.1063/1.349652.
  • Romeo, A., E. Artegiani, and D. Menossi. 2018. Low substrate temperature CdTe solar cells: A review. Solar Energy 175:9–15. doi: 10.1016/j.solener.2018.02.038.
  • Romeo, N., A. Bosio, and A. Romeo. 2010. An innovative process suitable to produce high-efficiency CdTe/cds thin-film modules. Solar Energy Materials and Solar Cells 94 (1):2–7. doi:10.1016/j.solmat.2009.06.001.
  • Romeo, N., A. Bosio, R. Tedeschi, and V. Canevari. 2000. Back contacts to CSS CdS/cdte solar cells and stability of performances. Thin Solid Films 361:327–29. doi: 10.1016/S0040-6090(99)00765-8.
  • Saga, T. 2010. Advances in crystalline silicon solar cell technology for industrial mass production. Npg Asia Materials 2 (3):96. doi:10.1038/asiamat.2010.82.
  • SaifAddin, B. K., A. Almogbel, C. J. Zollner, H. Foronda, A. Alyamani, A. Albadri, M. Iza, S. Nakamura, S. P. DenBaars, J. S. Speck, et al. 2019. Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC. Semiconductor Science and Technology 34 (3):035007. doi: 10.1088/1361-6641/aaf58f.
  • Salavei, A., D. Menossi, F. Piccinelli, A. Kumar, G. Mariotto, M. Barbato, M. Meneghini, G. Meneghesso, S. Di Mare, E. Artegiani, et al. 2016. Comparison of high efficiency flexible CdTe solar cells on different substrates at low temperature deposition. Solar Energy 139:13–18. doi:10.1016/j.solener.2016.09.004.
  • Saran, N., K. Parikh, D.-S. Suh, E. Munoz, H. Kolla, and S. K. Manohar. 2004. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. Journal of the American Chemical Society 126 (14):4462–63. doi:10.1021/ja037273p.
  • Sathyamoorthy, R., S. K. Narayandass, and D. Mangalaraj. 2003. Effect of substrate temperature on the structure and optical properties of CdTe thin film. Solar Energy Materials and Solar Cells 76 (3):339–46. doi:10.1016/S0927-0248(02)00286-6.
  • Shah, D. K., K. Devendra, M. Muddassir, M. S. Akhtar, C. Y. Kim, and O.-B. Yang. 2021. A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps. Solar Energy 216:259–65. doi: 10.1016/j.solener.2020.12.070.
  • Shah, A., H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat. 2004. Thin‐film silicon solar cell technology. Progress in Photovoltaics: Research and Applications 12 (2‐3):113–42. doi:10.1002/pip.533.
  • Shin, S., J. Bajaj, L. Moudy, and D. Cheung. 1983. Characterization of Te precipitates in CdTe crystals. Applied Physics Letters 43 (1):68–70. doi:10.1063/1.94123.
  • Shtereva, K., S. Flickyngerova, V. Tvarozek, I. Novotny, J. Kovac, and A. Vincze. 2012. Characterization of gallium–nitrogen co-doped zinc oxide thin films prepared by RF diode sputtering. Vacuum 86 (6):652–56. doi:10.1016/j.vacuum.2011.07.006.
  • Singh, V. P., and J. C. McClure. 2003. Design issues in the fabrication of CdS–cdte solar cells on molybdenum foil substrates. Solar Energy Materials and Solar Cells 76 (3):369–85. doi:10.1016/S0927-0248(02)00289-1.
  • Singh, K. J., M. Sahni, and M. Rajoriya. 2019. Study of structural, optical and semiconducting properties of TiO2 thin film deposited by RF magnetron sputtering. Materials Today: Proceedings 12:565–72.
  • Sprenger, J. K., H. Sun, A. S. Cavanagh, and S. M. George. 2018. Electron-Enhanced atomic layer deposition of silicon thin films at room temperature. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 36 (1):01A118. doi:10.1116/1.5006696.
  • Storm, K., F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson. 2012. Spatially resolved hall effect measurement in a single semiconductor nanowire. Nature Nanotechnology 7 (11):718–22. doi:10.1038/nnano.2012.190.
  • Sundqvist, E., F. Backlund, and D. Chronéer. 2014. What is project efficiency and effectiveness? Procedia-Social and Behavioral Sciences 119:278–87.
  • Talapin, D. V., S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller. 2001. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. The Journal of Physical Chemistry B 105 (12):2260–63. doi:10.1021/jp003177o.
  • Thiry, D., S. Konstantinidis, J. Cornil, and R. Snyders. 2016. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films 606:19–44. doi: 10.1016/j.tsf.2016.02.058.
  • Tokuda, N. 2019. Homoepitaxial diamond growth by plasma-enhanced chemical vapor deposition. In Novel aspects of diamond, ed.Y. Nianjun, 1–29. New York City: Springer.
  • Toma, O., L. Ion, M. Girtan, and S. Antohe. 2014. Optical, morphological and electrical studies of thermally vacuum evaporated CdTe thin films for photovoltaic applications. Solar Energy 108:51–60. doi: 10.1016/j.solener.2014.06.031.
  • Tynell, T., T. Aizawa, I. Ohkubo, K. Nakamura, and T. Mori. 2016. Deposition of thermoelectric strontium hexaboride thin films by a low pressure CVD method. Journal of Crystal Growth 449:10–14. doi: 10.1016/j.jcrysgro.2016.05.030.
  • Ukoba, K., A. Eloka-Eboka, and F. Inambao. 2018. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renewable and Sustainable Energy Reviews 82:2900–15. doi: 10.1016/j.rser.2017.10.041.
  • Wang, T., S. Du, W. Li, C. Liu, J. Zhang, L. Wu, B. Li, and G. Zeng. 2017. Control of Cu doping and CdTe/te interface modification for CdTe solar cells. Materials Science in Semiconductor Processing 72:46–51. doi: 10.1016/j.mssp.2017.09.013.
  • Wei, S.-H., and S. Zhang. 2002. Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Physical Review B 66 (15):155211. doi:10.1103/PhysRevB.66.155211.
  • Williams, B. L., J. D. Major, L. Bowen, W. Keuning, M. Creatore, and K. Durose. 2015. A comparative study of the effects of nontoxic chloride treatments on CdTe solar cell microstructure and stoichiometry. Advanced Energy Materials 5 (21):1500554. doi:10.1002/aenm.201500554.
  • Wu, X. 2004. High-Efficiency polycrystalline CdTe thin-film solar cells. Solar Energy 77 (6):803–14. doi:10.1016/j.solener.2004.06.006.
  • Wu, X., and P. Sheldon. 2000. A novel manufacturing process for fabricating CdS/cdte polycrystalline thin-film solar cells. United States: National Renewable Energy Laboratory.
  • Xia, W., H. Lin, H. N. Wu, C. W. Tang, I. Irfan, C. Wang, and Y. Gao. 2014. Te/cu bi-layer: A low-resistance back contact buffer for thin film CdS/cdte solar cells. Solar Energy Materials and Solar Cells 128:411–20. doi: 10.1016/j.solmat.2014.06.010.
  • Yamada, S. 1960. On the electrical and optical properties of p-type cadmium telluride crystals. Journal of the Physical Society of Japan 15 (11):1940–44. doi:10.1143/JPSJ.15.1940.
  • Yan, D., A. Cuevas, S. P. Phang, Y. Wan, and D. Macdonald. 2018. 23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films. Applied Physics Letters 113 (6):061603. doi:10.1063/1.5037610.
  • Zanio, K., and T. Massopust. 1986. Interdiffusion in HgCdte/cdte structures. Journal of Electronic Materials 15 (2):103–09. doi:10.1007/BF02649911.
  • Zeng, G., J. Zhang, B. Li, L. Wu, W. Li, and L. Feng. 2015. Effect of deposition temperature on the properties of CdTe thin films prepared by close-spaced sublimation. Journal of Electronic Materials 44 (8):2786–91. doi:10.1007/s11664-015-3739-z.
  • Zhao, Y., C. Li, M. Chen, X. Yu, Y. Chang, A. Chen, H. Zhu, and Z. Tang. 2016. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Physics Letters A 380 (47):3993–97. doi:10.1016/j.physleta.2016.06.030.
  • Zhu, H., Y. Xu, A. Liu, N. Kong, F. Shan, W. Yang, C. J. Barrow, and J. Liu. 2015. Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors and Actuators B: Chemical 206:592–600. doi: 10.1016/j.snb.2014.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.