310
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A numerical evaluation of felt electrodes in a vanadium redox flow battery

, &
Pages 1119-1136 | Received 26 May 2022, Accepted 27 Oct 2022, Published online: 18 Nov 2022

References

  • Agar, E., K. W. Knehr, D. Chen, M. A. Hickner, and E. C. Kumbur. 2013. Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing nafion® and sulfonated radel membranes. Electrochimica acta 98:66–74. doi:10.1016/j.electacta.2013.03.030.
  • Aguiló-Aguayo, N., T. Drozdzik, and T. Bechtold. 2020. The role of electrode orientation to enhance mass transport in redox flow batteries. Electrochemistry Communications 111 (November 2019):106650. doi:10.1016/j.elecom.2019.106650.
  • Ali, E., H. Kwon, J. Choi, J. Lee, J. Kim, and H. Park. 2020. A numerical study of electrode thickness and porosity effects in all vanadium redox flow batteries. Journal of Energy Storage 28 (October 2019):101208. doi:10.1016/j.est.2020.101208.
  • Ali, E., H. Kwon, J. Kim, and H. Park. 2020. Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries. Journal of Energy Storage 32 (June):101802. doi:10.1016/j.est.2020.101802.
  • Alphonse, P. J., and G. Elden. 2021. The investigation of thermal behavior in a vanadium redox flow battery during charge and discharge processes. Journal of Energy Storage 40 (April):102770. doi:10.1016/j.est.2021.102770.
  • Banerjee, R., N. Bevilacqua, L. Eifert, and R. Zeis. 2019. Characterization of carbon felt electrodes for vanadium redox flow batteries – a pore network modeling approach. Journal of Energy Storage 21 (September 2018):163–71. doi:10.1016/j.est.2018.11.014.
  • Bernardi, D. M., M. W. Verbrugge, J. E. Soc, D. M. Bernardi, and M. W. Verbrugge. 1992. Fuel cell a mathematical model of the solid-polymer-electrolyte fuel cell. Journal of the Electrochemical Society 139 (9):2477–91. doi:10.1149/1.2221251.
  • Blanc, C. 2009. Modeling of a Vanadium Redox Flow Battery Electricity Storage System. Laboratoire d’Electronique Industrielle PhD Thesis: 263.
  • Boettcher, P. A., E. Agar, C. R. Dennison, and E. C. Kumbur. 2016. Modeling of ion crossover in vanadium redox flow batteries: A computationally-efficient lumped parameter approach for extended cycling. Journal of the Electrochemical Society 163 (1):A5244–52. doi:10.1149/2.0311601jes.
  • Cao, L., M. Skyllas-Kazacos, C. Menictas, and J. Noack. 2018. A review of electrolyte additives and impurities in vanadium redox flow batteries. Journal of Energy Chemistry 27 (5):1269–91. doi:10.1016/j.jechem.2018.04.007.
  • Cheng, C., Y. Dai, J. Yu, C. Liu, S. Wang, S. P. Feng, and M. Ni. 2021. Review of liquid-based systems to recover low-grade waste heat for electrical energy generation. Energy & Fuels : An American Chemical Society Journal 35 (1):161–75. doi:10.1021/acs.energyfuels.0c03733.
  • Cheng, D., Y. Li, J. Zhang, M. Tian, B. Wang, Z. He, L. Dai, and L. Wang. 2020. Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: Properties, structures, and perspectives. Carbon 170:527–42. doi:10.1016/j.carbon.2020.08.058.
  • Clegg, S. L., P. Brimblecombe, D. A. Knopf, B. P. Luo, U. K. Krieger, and T. Koop. 2005. Comment on the “Thermodynamic dissociation constant of the bisulfate ion from raman and ion interaction modeling studies of aqueous sulfuric acid at low temperatures. The Journal of Physical Chemistry: A 109 (11):2703–09. doi:10.1021/jp0401170.
  • Daugherty, M. C., S. Gu, D. S. Aaron, B. Chandra Mallick, Y. A. Gandomi, and C. Te Hsieh. 2020. Decorating sulfur and nitrogen co-doped graphene quantum dots on graphite felt as high-performance electrodes for vanadium redox flow batteries. Journal of Power Sources 477 (July):228709. doi:10.1016/j.jpowsour.2020.228709.
  • Gandomi, Y. A., D. S. Aaron, T. A. Zawodzinski, and M. M. Mench. 2016. In Situ potential distribution measurement and validated model for all-vanadium redox flow battery. Journal of the Electrochemical Society 163 (1):A5188–201. doi:10.1149/2.0211601jes.
  • Gencten, M., and Y. Sahin. 2020. A critical review on progress of the electrode materials of vanadium redox flow battery. International Journal of Energy Research 44: 7903–23. doi:10.1002/er.5487.
  • Gu, F.-C., H.-C. Chen, and K.-L. Li. 2020. Mathematic modeling and performance analysis of vanadium redox flow battery. Energy & Fuels : An American Chemical Society Journal 34 (8):10142–47. doi:10.1021/acs.energyfuels.0c01536.
  • He, Q., J. Yu, Z. Guo, J. Sun, S. Zhao, T. Zhao, and M. Ni. 2021. Modeling of vanadium redox flow battery and electrode optimization with different flow fields. E-Prime - Advances in Electrical Engineering, Electronics and Energy 1:100001. doi:10.1016/j.prime.2021.100001.
  • Houser, J., A. Pezeshki, J. T. Clement, D. Aaron, and M. M. Mench. 2017. Architecture for improved mass transport and system performance in redox flow batteries. Journal of Power Sources 351:96–105. doi:10.1016/j.jpowsour.2017.03.083.
  • Israel, R. 1995. Physical electrochemistry: Principles, methods, and applications. ed. I. Rubinstein, New York: Marcel Dekker.
  • Jiang, H. R., W. Shyy, M. C. Wu, L. Wei, and T. S. Zhao. 2017. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries. Journal of Power Sources 365:34–42. doi:10.1016/j.jpowsour.2017.08.075.
  • Ke, X., J. M. Prahl, J. I. D. Alexander, and R. F. Savinell. 2018. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance. Journal of Power Sources 384 (March):295–302. doi:10.1016/j.jpowsour.2018.03.001.
  • Knehr, K., E. Agar, C. R. Dennison, A. R. Kalidindi, and E. C. Kumbur. 2012. A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane. Journal of the Electrochemical Society 15A1446 (9):A1446–59. doi:10.1149/2.017209jes.
  • Knehr, K. W., and E. C. Kumbur. 2011. Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments. Electrochemistry Communications 13 (4):342–45. doi:10.1016/j.elecom.2011.01.020.
  • Kontturi, K., and J. A. M. Lasse Murtomaki. 2008. Ionic transport processes in electrochemistry and membrane science. England: OUP Oxford.
  • Lei, Y., B. W. Zhang, B. F. Bai, X. Chen, and T. S. Zhao. 2021. A transient model for vanadium redox flow batteries with bipolar membranes. Journal of Power Sources 496 (September 2020):229829. doi:10.1016/j.jpowsour.2021.229829.
  • Lei, Y., B. W. Zhang, B. F. Bai, X. Chen, and T. S. Zhao. 2022. A transient model for charge and mass transfer through anion exchange membranes in vanadium redox flow batteries. International Journal of Heat and Mass Transfer 186:122509. doi:10.1016/j.ijheatmasstransfer.2021.122509.
  • Lei, Y., B. W. Zhang, B. F. Bai, and T. S. Zhao. 2015. A transient electrochemical model incorporating the donnan effect for all-vanadium redox flow batteries. Journal of Power Sources 299:202–11. doi:10.1016/j.jpowsour.2015.08.100.
  • Leung, P. K., Q. Xu, T. S. Zhao, L. Zeng, and C. Zhang. 2013. Preparation of Silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries. Electrochimica acta 105:584–92. doi:10.1016/j.electacta.2013.04.155.
  • Lu, M. Y., W. W. Yang, Y. M. Deng, W. Z. Li, Q. Xu, and Y. L. He. 2019. Mitigating capacity decay and improving charge-discharge performance of a vanadium redox flow battery with asymmetric operating conditions. Electrochimica acta 309:283–99. doi:10.1016/j.electacta.2019.04.032.
  • Mcgregor, R. 1965. The effect of rate of flow on rate of dyeing II–The mechanism of fluid flow through textiles and its significance in dyeing. Journal of the Society of Dyers and Colourists 81 (10):429–38. doi:10.1111/j.1478-4408.1965.tb02615.x.
  • Newman, J., and K. E. Thomas-Alyea. 2004. Electrochemical systems. Third New Jersey: Wiley.
  • Oh, K., S. Won, and H. Ju. 2015. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries. Electrochimica acta 181:13–23. doi:10.1016/j.electacta.2015.02.212.
  • Oh, K., H. Yoo, J. Ko, S. Won, and H. Ju. 2015. Three-dimensional, transient, nonisothermal model of all-vanadium redox flow batteries. Energy 81:3–14. doi:10.1016/j.energy.2014.05.020.
  • Pavelka, M., F. Wandschneider, and P. Mazur. 2015. Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries. Journal of Power Sources 293:400–08. doi:10.1016/j.jpowsour.2015.05.049.
  • Pourcelly, G., A. Lindheimer, C. Gavach, and H. D. Hurwitz. 1991. Electrical transport of sulphuric acid in nation perfluorosulphonic membranes. Journal of Electroanalytical Chemistry 305 (1):97–113. doi:10.1016/0022-0728(91)85205-4.
  • SGL. 2022. SGL-datasheet-SIGRACELL-battery-felts-sigracell battery felts. https://www.sglcarbon.com/en/markets-solutions/material/sigracell-battery-felts/.
  • Shan, J., and D. Xiao. 2021. Uncovering the effect of ion exchange membrane on capacity decay and efficiency for all-vanadium redox flow battery by modeling analysis. International Journal of Green Energy 19 (12):1–8. doi:10.1080/15435075.2021.1997752.
  • Shi, Y., Z. Wei, H. Liu, and J. Zhao. 2022. Dynamic modeling of long-term operations of vanadium/air redox flow battery with different membranes. Journal of Energy Storage 50 (August 2021):104171. doi:10.1016/j.est.2022.104171.
  • Skyllas-Kazacos, M. 1988. All-Vanadium Redox Battery. Unıted States of Amerıca: US Patent.
  • Sun, C., J. Chen, H. Zhang, X. Han, and Q. Luo. 2010. Investigations on transfer of water and vanadium ions across nafion membrane in an operating vanadium redox flow battery. Journal of Power Sources 195 (3):890–97. doi:10.1016/j.jpowsour.2009.08.041.
  • Tang, A., J. Bao, and M. Skyllas-Kazacos. 2011. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. Journal of Power Sources 196 (24):10737–47. doi:10.1016/j.jpowsour.2011.09.003.
  • Tang, A., J. Bao, and M. Skyllas-Kazacos. 2012. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery. Journal of Power Sources 216:489–501. doi:10.1016/j.jpowsour.2012.06.052.
  • Verbrugge, M. W., and R. F. Hill. 1990. Ion and solvent transport in ion‐exchange membranes: II. A radiotracer study of the sulfuric‐acid, nafion‐117 system. Journal of the Electrochemical Society 137 (3):893–99. doi:10.1149/1.2086574.
  • Wandschneider, F. T., D. Finke, S. Grosjean, P. Fischer, K. Pinkwart, J. Tübke, and H. Nirschl. 2014. Model of a vanadium redox flow battery with an anion exchange membrane and a larminie-correction. Journal of Power Sources 272:436–47. doi:10.1016/j.jpowsour.2014.08.082.
  • Wang, Q., Z. G. Qu, Z. Y. Jiang, and W. W. Yang. 2018. Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field. Applied Energy 220 (March):106–16. doi:10.1016/j.apenergy.2018.03.058.
  • Won, S., K. Oh, and H. Ju. 2015. Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries. Electrochimica acta 177:310–20. doi:10.1016/j.electacta.2015.01.166.
  • Won, S., K. Oh, and H. Ju. 2016. Numerical studies of carbon paper-based vanadium redox flow batteries. Electrochimica acta 201:286–99. doi:10.1016/j.electacta.2015.11.091.
  • Xiong, B., Y. Ding, Q. Zhang, S. Shi, and H. Zhang. 2022. Finite element-based analysis of composite serpentine flow channel 3D modeling of vanadium redox flow battery. International Journal of Green Energy 00 (00):1–8.
  • Xiong, R., B. Xiong, Q. Zhang, S. Shi, Y. Su, and D. Zhang. 2022. Capacity fading model of vanadium redox flow battery considering water molecules migration. International Journal of Green Energy 00 (00):1–10. doi:10.1080/15435075.2021.2015599.
  • Xi, J., Z. Wu, X. Teng, Y. Zhao, L. Chen, and X. Qiu. 2008. Self-assembled polyelectrolyte multilayer modified nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. Journal of Materials Chemistry 18 (11):1232–38. doi:10.1039/b718526j.
  • Xu, P., and B. Yu. 2008. Developing a new form of permeability and kozeny-carman constant for homogeneous porous media by means of fractal geometry. Advances in Water Resources 31 (1):74–81. doi:10.1016/j.advwatres.2007.06.003.
  • Xu, J., H. Zhao, W. Li, P. Li, C. Chen, Z. Yue, L. Zou, and H. Yang. 2022. Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries. Chemical Engineering Journal 433 (P2):133197. doi:10.1016/j.cej.2021.133197.
  • Yang, X. G., Q. Ye, P. Cheng, and T. S. Zhao. 2015. Effects of the electric field on ion crossover in vanadium redox flow batteries. Applied Energy 145:306–19. doi:10.1016/j.apenergy.2015.02.038.
  • Yin, C., Y. Gao, S. Guo, and H. Tang. 2014. A coupled three dimensional model of vanadium redox flow battery for flow field designs. Energy 74 (C):886–95. doi:10.1016/j.energy.2014.07.066.
  • You, X., Q. Ye, and P. Cheng. 2016. Scale-up of high power density redox flow batteries by introducing interdigitated flow fields. International Communications in Heat and Mass Transfer 75:7–12. doi:http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.03.021.
  • You, D., H. Zhang, and J. Chen. 2009. A simple model for the vanadium redox battery. Electrochimica acta 54 (27):6827–36. doi:10.1016/j.electacta.2009.06.086.
  • You, D., H. Zhang, C. Sun, and X. Ma. 2011. Simulation of the self-discharge process in vanadium redox flow battery. Journal of Power Sources 196 (3):1578–85. doi:10.1016/j.jpowsour.2010.08.036.
  • Zhang, D., A. Forner-Cuenca, O. O. Taiwo, V. Yufit, F. R. Brushett, N. P. Brandon, S. Gu, and Q. Cai. 2020. Understanding the role of the porous electrode microstructure in redox flow battery performance using an experimentally validated 3D pore-scale lattice boltzmann model. Journal of Power Sources 447 (March 2019):227249. doi:10.1016/j.jpowsour.2019.227249.
  • Zhou, X. L., T. S. Zhao, L. An, Y. K. Zeng, and X. H. Yan. 2015. A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility. Applied Energy 158:157–66. doi:10.1016/j.apenergy.2015.08.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.