357
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of assisted heating cold start strategies from -40 °C for proton exchange membrane fuel cell stack

, , , , , , , , , , , , , & show all
Pages 1559-1572 | Received 09 Sep 2022, Accepted 23 Dec 2022, Published online: 06 Jan 2023

References

  • Ahluwalia, R. K., and X. Wang. 2006. Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures. Journal of Power Sources 162 (1):502–12. doi:10.1016/j.jpowsour.2006.06.071.
  • Amamou, A., M. Kandidayeni, L. Boulon, and S. Kelouwani. 2018. Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells. Applied Energy 216:21–30. doi:10.1016/j.apenergy.2018.02.071.
  • DOE. 2016. DOE technical targets for fuel cell systems and stacks for transportation applications. [accessed May 2, 2022]. https://energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications
  • Guo, Q., Y. Luo, and K. Jiao. 2013. Modeling of assisted cold start processes with anode catalytic hydrogen–oxygen reaction in proton exchange membrane fuel cell. International Journal of Hydrogen Energy 38 (2):1004–15. doi:10.1016/j.ijhydene.2012.10.067.
  • Gupta, N., C. York, J. Needham, and P. Hagans. 2006. Platform for rapid prototyping of pem fuel cell designs with enhanced cold-start performance and durability. ECS Transactions 1 (6):383–88. doi:http://dx.doi.org/10.1149/1.2214509.
  • Haddad, A., R. Bouyekhf, and A. E. Moudni. 2008. Dynamic modeling and water management in proton exchange membrane fuel cell. International Journal of Hydrogen Energy 33 (21):6239–52. doi:10.1016/j.ijhydene.2008.06.014.
  • Hu, K., T. Chu, F. Li, B. Wang, Z. Zhang, and T. Liu. 2021. Effect of different control strategies on rapid cold start-up of a 30-cell proton exchange membrane fuel cell stack. International Journal of Hydrogen Energy 46 (62):31788–97. doi:10.1016/j.ijhydene.2021.07.041.
  • Huo, S., K. Jiao, and J. W. Park. 2019. On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell. Applied Energy 233-234:776–88. doi:10.1016/j.apenergy.2018.10.068.
  • Huo, S., L. Li, W. Shi, R. Wang, B. Lu, Y. Yin, C. Zhu, Y. Wang, K. Jiao, and Z. Hou. 2021. Characteristics of cold start behavior of pem fuel cell with metal foam as cathode flow field under subfreezing temperature. International Journal of Green Energy 18 (11):1129–46. doi:10.1080/15435075.2021.1891911.
  • Jiang, F., C. -Y. Wang, and K. S. Chen. 2010. Current ramping: A strategy for rapid start-up of PEMFCs from subfreezing environment. Journal of the Electrochemical Society 157 (3):B342–47. doi:https://doi.org/10.1149/1.3274820.
  • Jiao, K., and X. Li. 2010. Cold start analysis of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy 35 (10):5077–94. doi:10.1016/j.ijhydene.2009.09.004.
  • Jiao, K., B. Wang, Q. Du, Y. Wang, G. Zhang, Z. Yang, H. Deng, and X. Xie. 2021b. Water and thermal management of proton exchange membrane fuel cells. Elsevier. doi:10.1016/C2020-0-04110-1.
  • Jiao, K., J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, et al. 2021a. Designing the next generation of proton-exchange membrane fuel cells. Nature 595 (7867):361–69. doi:https://doi.org/10.1038/s41586-021-03482-7.
  • Limbeck, U. 2014. Method to cold-start fuel cell system at sub-zero temperatures. U.S. Patent 8841040.
  • Li, L., S. Wang, L. Yue, and G. Wang. 2019. Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode. Applied Energy 254:113716. doi:10.1016/j.apenergy.2019.113716.
  • Luo, Y., and K. Jiao. 2018. Cold start of proton exchange membrane fuel cell. Progress in Energy and Combustion Science 64:29–61. doi:10.1016/j.pecs.2017.10.003.
  • Meng, H. 2008. Numerical studies of cold-start phenomenon in PEM fuel cells. Electrochimica acta 53 (22):6521–29. doi:10.1016/j.electacta.2008.04.044.
  • Niu, H., C. Ji, S. Wang, M. Shi, H. Zhang, and C. Liang. 2021. Analysis of the cold start behavior of a polymer electrolyte membrane fuel cell in constant power start-up mode. International Journal of Energy Research 45 (13):19245–64. doi:10.1002/er.7025.
  • Ozden, A., S. Shahgaldi, J. Zhao, X. Li, and F. Hamdullahpur. 2020. Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: Morphology and microstructure effects. International journal of hydrogen energy 45 (5):3618–31. doi:10.1016/j.ijhydene.2018.10.209.
  • Patel, S., A. S. Bansode, T. Sundararajan, and S. K. Das. 2008. The performance analysis of a multi-duct proton exchange membrane fuel cell cathode. International Journal of Green Energy 5 (1–2):35–54. doi:10.1080/15435070701839413.
  • Rabbani, A., M. Rokni, E. Hosseinzadeh, and H. H. Mortensen. 2014. The start-up analysis of a pem fuel cell system in vehicles. International Journal of Green Energy 11 (1):91–111. doi:10.1080/15435075.2013.769882.
  • Ríos, G. M., J. Schirmer, C. Gentner, and J. Kallo. 2020. Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system. Applied Energy 279:115813. doi:10.1016/j.apenergy.2020.115813.
  • Sun, J., X. Yang, S. Sun, and Z. Shao. 2021. Investigation on the temperature uniformity and efficiency of cold start-up for proton exchange membrane fuel cell stack based on catalytic hydrogen/oxygen method. Journal of Power Sources 496:229755. doi:10.1016/j.jpowsour.2021.229755.
  • Tajiri, K., Y. Tabuchi, F. Kagami, S. Takahashi, K. Yoshizawa, and C. -Y. Wang. 2007. Effects of operating and design parameters on PEFC cold start. Journal of Power Sources 165 (1):279–86. doi:10.1016/j.jpowsour.2006.12.017.
  • Wang, Y., B. Seo, B. Wang, N. Zamel, K. Jiao, and X. C. Adroher. 2020b. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and AI 1:100014. doi:10.1016/j.egyai.2020.100014.
  • Wang, B., K. Wu, Z. Yang, and K. Jiao. 2018. A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation. Energy Conversion and Management 171:1463–75. doi:https://doi.org/10.1016/j.enconman.2018.06.091.
  • Wang, B., G. Zhang, H. Wang, J. Xuan, and K. Jiao. 2020a. Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model. Energy and AI 1:100004. doi:10.1016/j.egyai.2020.100004.
  • Wang, S., Y. Zhang, H. Xu, and J. Zhang. 2021. An adiabatic cell as a model for stack in PEFC cold start study. International journal of hydrogen energy 46 (61):31391–99. doi:10.1016/j.ijhydene.2021.07.044.
  • Wu, K., Q. Du, B. Zu, Y. Wang, J. Cai, X. Gu, J. Xuan, and K. Jiao. 2021. Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method. Applied Energy 303:117659. doi:10.1016/j.apenergy.2021.117659.
  • Wu, K., X. Xie, B. Wang, Z. Yang, Q. Du, J. Xuan, B. Zu, Z. Liu, and K. Jiao. 2020. Two-dimensional simulation of cold start processes for proton exchange membrane fuel cell with different hydrogen flow arrangements. International Journal of Hydrogen Energy 45 (35):17795–812. doi:10.1016/j.ijhydene.2020.04.187.
  • Yang, Z., K. Jiao, K. Wu, W. Shi, S. Jiang, L. Zhang, and Q. Du. 2021. Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems. Energy 222:119910. doi:10.1016/j.energy.2021.119910.
  • Yan, Q., H. Toghiani, Y. -W. Lee, K. Liang, and H. Causey. 2006. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. Journal of Power Sources 160 (2):1242–50. doi:10.1016/j.jpowsour.2006.02.075.
  • Zhang, Q., Z. Tong, S. Tong, and Z. Cheng. 2021b. Research on low-temperature performance of plate-fin hydrogen preheater for a proton-exchange membrane fuel cell. International Journal of Green Energy 18 (5):457–73. doi:10.1080/15435075.2020.1865368.
  • Zhang, G., L. Wu, Z. Qin, J. Wu, F. Xi, G. Mou, Y. Wang, and K. Jiao. 2021a. A comprehensive three-dimensional model coupling channel multi-phase flow and electrochemical reactions in proton exchange membrane fuel cell. Advances in Applied Energy 2:100033. doi:10.1016/j.adapen.2021.100033.
  • Zhan, Z., C. Yuan, Z. Hu, H. Wang, P. C. Sui, N. Djilali, and M. Pan. 2018. Experimental study on different preheating methods for the cold-start of PEMFC stacks. Energy 162:1029–40. doi:10.1016/j.energy.2018.08.003.
  • Zhao, J., X. Li, C. Shum, and J. McPhee. 2021. A review of physics-based and data-driven models for real-time control of polymer electrolyte membrane fuel cells. Energy and AI 6:100114. doi:10.1016/j.egyai.2021.100114.
  • Zhu, Y., R. Lin, L. Han, Z. Jiang, and D. Zhong. 2021. Investigation on cold start of polymer electrolyte membrane fuel cells stacks with diverse cathode flow fields. International journal of hydrogen energy 46 (7):5580–92. doi:10.1016/j.ijhydene.2020.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.