328
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimization of geometric parameters of ejector for fuel cell system based on multi-objective optimization method

ORCID Icon, &
Pages 228-243 | Received 16 Sep 2022, Accepted 22 Mar 2023, Published online: 12 Apr 2023

References

  • ANSYS. 2018. Inc. ANSYS fluent theory guide. USA: ANSYS, Inc.
  • Bayat, M., M. Ozalp, and H. Gurbuz. 2022. Comprehensive performance analysis of a high-temperature PEM fuel cell under different operating and design conditions. Sustainable Energy Technologies and Assessments 52:102232. doi:10.1016/j.seta.2022.102232.
  • Brunner, D. A., S. Marcks, M. Bajpai, A. K. Prasad, and S. G. Advani. 2012. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. International Journal of Hydrogen Energy 37 (5):4457–66. doi:10.1016/j.ijhydene.2011.11.116.
  • Chang, X., T. Ma, and R. Wu. 2019. Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives. International Journal of Hydrogen Energy 44 (30):16015–27. doi:10.1016/j.ijhydene.2018.09.099.
  • Chen, J., K. Gao, M. Liang, and H. Zhang. 2019. Performance evaluation of an SOFC-GT hybrid system with ejectors for the anode and cathode recirculations. Journal of Electrochemical Energy Conversion and Storage 16 (4):041004. doi:10.1115/1.4042985.
  • Chen, B., Y. Liu, W. Chen, C. Du, J. Shen, and Z. Tu. 2022. Numerical study on purge characteristics and purge strategy for PEMFC hydrogen system based on exhaust hydrogen recirculation. International Journal of Energy Research 46 (8):11424–42. doi:10.1002/er.7939.
  • Collins, J. M., and D. McLarty. 2020. All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids. Applied Energy 265:114787. doi:10.1016/j.apenergy.2020.114787.
  • Dong, K., G. Liu, Q. Yang, Y. Zhao, L. Li, and Z. Gao. 2021. Flow field analysis and performance study of claw hydrogen circulating pump in fuel cell system. International Journal of Hydrogen Energy 46 (69):34438–48. doi:10.1016/j.ijhydene.2021.08.014.
  • Du, Z., Q. Liu, X. Wang, and L. Wang. 2021. Performance investigation on a coaxial-nozzle ejector for PEMFC hydrogen recirculation system. International Journal of Hydrogen Energy 46 (76):38026–39. doi:10.1016/j.ijhydene.2021.09.048.
  • Genc, O., B. Timurkutluk, and S. Toros. 2019. Performance evaluation of ejector with different secondary flow directions and geometric properties for solid oxide fuel cell applications. Journal of Power Sources 421:76–90. doi:10.1016/j.jpowsour.2019.03.010.
  • Genc, O., S. Toros, and B. Timurkutluk. 2018. Geometric optimization of an ejector for a 4 kW SOFC system with anode off-gas recycle. International Journal of Hydrogen Energy 43 (19):9413–22. doi:10.1016/j.ijhydene.2018.03.213.
  • Han, J., J. Feng, T. Hou, and X. Peng. 2021. Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research 45 (2):3031–48. doi:10.1002/er.5996.
  • Han, E., and N. Ghadimi. 2022. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm. Sustain Energy Technol Assess 52:102005. doi:10.1016/j.seta.2022.102005.
  • Han, S. T., X. D. Shu, V. Shchukin, and G. Kozhevnikova. 2018. Multi-objective optimization of process parameters of multi-step shaft formed with cross wedge rolling based on orthogonal test. 372. doi:10.1088/1757-899X/372/1/012044.
  • He, J., J. Ahn, and S. -Y. Choe. 2011. Analysis and control of a fuel delivery system considering a two-phase anode model of the polymer electrolyte membrane fuel cell stack. Journal of Power Sources 196 (10):4655–70. doi:10.1016/j.jpowsour.2011.01.019.
  • Huang, Y., P. Jiang, and Y. Zhu. 2022. Quasi-two-dimensional ejector model for anode gas recirculation fuel cell systems. Energy Conversion and Management 262:115674. doi:10.1016/j.enconman.2022.115674.
  • Huo, S., L. Li, W. Shi, R. Wang, B. Lu, Y. Yin, C. Zhu, Y. Wang, K. Jiao, and Z. Hou. 2021. Characteristics of cold start behavior of PEM fuel cell with metal foam as cathode flow field under subfreezing temperature. International Journal of Green Energy 18 (11):1129–46. doi:10.1080/15435075.2021.1891911.
  • Jenssen, D., O. Berger, and U. Krewer. 2015. Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells. Journal of Power Sources 298:249–58. doi:10.1016/j.jpowsour.2015.08.005.
  • Jianmei, F., Z. Qingqing, H. Tianfang, and P. Xueyuan. 2021. Dynamics characteristics analysis of the oil-free scroll hydrogen recirculating pump based on multibody dynamics simulation. International Journal of Hydrogen Energy 46 (7):5699–713. doi:10.1016/j.ijhydene.2020.11.065.
  • Khanmohammadi, S., H. Abdi Chaghakaboodi, and F. Musharavati. 2021. Solar-based Kalina cycle integrated with PEM fuel cell boosted by thermoelectric generator: Development arid thermodynamic analysis. International Journal of Green Energy 18 (8):866–78. doi:10.1080/15435075.2021.1881900.
  • Kim, M., W. -Y. Lee, and C. -S. Kim. 2007. Development of the variable multi-ejector for a mini-bus PEMFC system. ECS Transactions 5 (1):773–80. doi:10.1149/1.2729058.
  • Kim, M., Y. -J. Sohn, C. -W. Cho, W. -Y. Lee, and C. -S. Kim. 2008. Customized design for the ejector to recirculate a humidified hydrogen fuel in a submarine PEMFC. Journal of Power Sources 176 (2):529–33. doi:10.1016/j.jpowsour.2007.08.069.
  • Lee, H., S. Jegal, and S. J. Song. 2017. Analysis and measurement of relative humidity effects on ejector performance. Journal of Mechanical Science and Technology 31 (9):4237–44. doi:10.1007/s12206-017-0822-9.
  • Li, X., and J. Hao. 2020. Optimization design of low-density and high-strength ceramic proppants by orthogonal experiment. Advanced Composites Letters 29:2633366X20954875. doi:10.1177/2633366X20954875.
  • Li, J., B. Yang, and T. Yu. 2022. Distributed deep reinforcement learning-based coordination performance optimization method for proton exchange membrane fuel cell system. Sustain Energy Technol Assess 50:101814. doi:10.1016/j.seta.2021.101814.
  • Li, J., and T. Yu. 2021. Large-scale multi-agent deep reinforcement learning-based coordination strategy for energy optimization and control of proton exchange membrane fuel cell. Sustainable Energy Technologies and Assessments 48:101568. doi:10.1016/j.seta.2021.101568.
  • Ma, T., M. Cong, Y. Meng, K. Wang, D. Zhu, and Y. Yang. 2021. Numerical studies on ejector in proton exchange membrane fuel cell system with anodic gas state parameters as design boundary. International Journal of Hydrogen Energy 46 (78):38841–53. doi:10.1016/j.ijhydene.2021.09.148.
  • Maghsoodi, A., E. Afshari, and H. Ahmadikia. 2014. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm. Applied Thermal Engineering 71 (1):410–18. doi:10.1016/j.applthermaleng.2014.06.067.
  • Nosratabadi, S. M., R. Hemmati, M. Bornapour, and M. Abdollahpour. 2021. Economic evaluation and energy/exergy analysis of PV/Wind/PEMFC energy resources employment based on capacity, type of source and government incentive policies: Case study in Iran. Sustainable Energy Technologies and Assessments 43:100963. doi:10.1016/j.seta.2020.100963.
  • Novoa, L., R. Neal, S. Samuelsen, and J. Brouwer. 2020. Fuel cell transmission integrated grid energy resources to support generation-constrained power systems. Applied Energy 276:115485. doi:10.1016/j.apenergy.2020.115485.
  • Pan, M., P. Hu, R. Gao, and K. Liang. n.d. Multistep prediction of remaining useful life of proton exchange membrane fuel cell based on temporal convolutional network. International Journal of Green Energy. doi:10.1080/15435075.2022.2050377.
  • Pei, P., P. Ren, Y. Li, Z. Wu, D. Chen, S. Huang, and X. Jia. 2019. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system. Applied Energy 235:729–38. doi:10.1016/j.apenergy.2018.11.005.
  • Rogie, B., C. Wen, M. R. Kaern, and E. Rothuizen. 2021. Optimisation of the fuelling of hydrogen vehicles using cascade systems and ejectors. International Journal of Hydrogen Energy 46 (14):9567–79. doi:10.1016/j.ijhydene.2020.12.098.
  • Song, Y., X. Wang, L. Wang, F. Pan, W. Chen, and F. Xi. 2021. A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system. Applied Energy 300:117442. doi:10.1016/j.apenergy.2021.117442.
  • Wang, G., X. Ma, T. Hu, and D. Zhang. 2013. Experimental and analytical study on factors influencing biomimetic undulating fin propulsion performance based on orthogonal experimental design. Advanced Robotics 27 (8):597–609. doi:10.1080/01691864.2013.763749.
  • Wang, X., S. Xu, and C. Xing. 2019. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack. Journal of Power Sources 415:25–32. doi:10.1016/j.jpowsour.2019.01.039.
  • Wen, H., J. Yan, and X. Li. 2021. Influence of liquid volume fraction on ejector performance: A numerical study. Applied Thermal Engineering 190:116845. doi:10.1016/j.applthermaleng.2021.116845.
  • Wu, Y., H. Zhao, C. Zhang, L. Wang, and J. Han. 2018. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy 151:79–93. doi:10.1016/j.energy.2018.03.041.
  • Yang, Y., W. Du, T. Ma, W. Lin, M. Cong, H. Yang, and Z. Yu. 2020. Numerical studies on ejector structure optimization and performance prediction based on a novel pressure drop model for proton exchange membrane fuel cell anode. International Journal of Hydrogen Energy 45 (43):23343–52. doi:10.1016/j.ijhydene.2020.06.068.
  • Ye, L., K. Jiao, Q. Du, and Y. Yin. 2015. Exergy analysis of high-temperature proton exchange membrane fuel cell systems. International Journal of Green Energy 12 (9):917–29. doi:10.1080/15435075.2014.892004.
  • Yin, Y., M. Fan, K. Jiao, Q. Du, and Y. Qin. 2016. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Conversion and Management 126:1106–17. doi:10.1016/j.enconman.2016.09.024.
  • Zhang, Y. 1999. Fluid mechanics. 2nd ed. Beijing: Higher Education Press.
  • Zhang, B., D. Hao, J. Chen, C. Zhang, B. Chen, Z. Wei, and Y. Wang. 2022. Modeling and decentralized predictive control of ejector circulation-based PEM fuel cell anode system for vehicular application. Automotive Innovation 5 (3):333–45. doi:10.1007/s42154-022-00190-4.
  • Zhang, R., P. He, F. Bai, L. Chen, and W. -Q. Tao. 2021. Multiscale modeling of proton exchange membrane fuel cells by coupling pore-scale models of the catalyst layers and cell-scale models. International Journal of Green Energy 18 (11):1147–60. doi:10.1080/15435075.2021.1891912.
  • Zhang, D., Y. Yang, J. Fang, and A. Alkhayyat. 2022. An optimal methodology for optimal controlling of a PEMFC connected to the grid based on amended penguin optimization algorithm. Sustainable Energy Technologies and Assessments 53:102401. doi:10.1016/j.seta.2022.102401.
  • Zhu, Y., W. Cai, C. Wen, and Y. Li. 2009. Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering 29 (5–6):898–905. doi:10.1016/j.applthermaleng.2008.04.025.
  • Zhu, Y., P. Jiang Geometry Optimization Study of Ejector in Anode Recirculation Solid Oxygen Fuel Cell System. 2011 6th Ieee Conference on Industrial Electronics and Applications (iciea), New York: Ieee; p. 51–55.
  • Zhu, Y., C. Li, F. Zhang, and P. -X. Jiang. 2017. Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system. Energy Conversion and Management 151:98–106. doi:10.1016/j.enconman.2017.08.061.
  • Zou, H., T. Yang, M. Tang, C. Tian, and D. Butrymowicz. 2022. Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors. Energy 239:122452. doi:10.1016/j.energy.2021.122452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.