55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of a narrow channel inserted in the conventional ice block mold with brine injection on the productivity and ice formation behavior of the low temperature brine bathing ice production process

&
Pages 387-398 | Received 20 Sep 2022, Accepted 23 Mar 2023, Published online: 30 Mar 2023

References

  • Afsharpanah, F., S. S. M. Ajarostaghi, M. Arıcı. 2022. Parametric study of phase change time reduction in a shell-and-tube ice storage system with anchor-type fin design. International Communications in Heat and Mass Transfer 137:106281. doi:10.1016/j.icheatmasstransfer.2022.106281.
  • Afsharpanah, F., K. Pakzad, S. S. M. Ajarostaghi, and M. Müslüm Arıcı. 2022. Assessment of the charging performance in a cold thermal energy storage container with two rows of serpentine tubes and extended surfaces. Journal of Energy Storage 51:104464. doi:10.1016/j.est.2022.104464.
  • Agyenim, F., P. Eames, and M. Smyth. 2009. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy 83 (9):1509–20. doi:10.1016/j.solener.2009.04.007.
  • Ahmadi, R., M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury. 2018. Phase change in spiral coil heat storage systems. Sustainable Cities and Society 38:145–57. doi:10.1016/j.scs.2017.12.026.
  • Al-Abidi, A. A., S. Mat, K. Sopian, M. Y. Sulaiman, and A. T. Mohamad. 2013. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering 53 (1):147–56. doi:10.1016/j.applthermaleng.2013.01.011.
  • ANSYS. Fluent theory guide, ANSYS, inc. 2013. 39–57. Pennsylvania.
  • Brent, A. D., V. R. Voller, and K. J. Reid. 1988. Enthalpy-porosity technique for melting convection-diffusion phase change: Application to the melting of a pure metal. Numerical Heat Transfer 13 (3):297–318. doi:10.1080/10407788808913615.
  • Castella, A., C. Soléa, M. Medranoa, J. Rocaa, L. F. Cabezaa, and D. García. 2008. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Applied Thermal Engineering 28 (13):1676–86. doi:10.1016/j.applthermaleng.2007.11.004.
  • Chinsuwan, A., and P. Yisunzam. 2021. Effect of transverse triangular wedges on the behavior of the ash deposition and heat transfer of an inline tube bundle. International Journal of Heat and Mass Transfer 172:121121. doi:10.1016/j.ijheatmasstransfer.2021.121121.
  • Dekhil, M. A., J. V. S. Tala, O. Bulliard-Sauret, and D. Bougeard. 2021. Numerical analysis of the performance enhancement of a latent heat storage shell and tube unit using finned tubes during melting and solidification. Applied Thermal Engineering 192:116866. doi:10.1016/j.applthermaleng.2021.116866.
  • Erek, A., Z. I1ken, and M. A. Acar. 2005. Experimental and numerical investigation of thermal energy storage with a finned tube. International Journal of Energy Research 29 (4):283–301. doi:10.1002/er.1057.
  • García-Valladares, O. 2004. Numerical simulation of triple concentric-tube heat exchangers. International Journal of Thermal Sciences 43 (10):979–91. doi:10.1016/j.ijthermalsci.2004.02.006.
  • Hosseini, M. J., A. A. Ranjbar, M. Rahimia, and R. Bahrampoury. 2015. Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems. Energy and Buildings 99:263–72. doi:10.1016/j.enbuild.2015.04.045.
  • Ismail, K. A. R., C. L. F. Alves, and M. S. Modesto. 2001. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering 21 (1):53–77. doi:10.1016/S1359-4311(00)00002-8.
  • Jannesari, H., and N. Abdollahi. 2017. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems. Applied Energy 189:369–84. doi:10.1016/j.apenergy.2016.12.064.
  • Kalapala, L., and J. K. Devanuri. 2018. Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage – a review. Journal of Energy Storage 20:497–519. doi:10.1016/j.est.2018.10.024.
  • Kousha, N., M. J. Hosseini, M. R. Aligoodarz, R. Pakrouh, and R. Bahrampoury. 2017. Effect of inclination angle on the performance of a shell and tube heat storage unit – an experimental study. Applied Thermal Engineering 112:1497–509. doi:10.1016/j.applthermaleng.2016.10.203.
  • Lacroix, M. 1993. Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. International Journal of Heat and Mass Transfer 36 (8):2083–92. doi:10.1016/S0017-9310(05)80139-5.
  • Liu, C., and D. Groulx. 2014. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. International Journal of Thermal Sciences 82:100–10. doi:10.1016/j.ijthermalsci.2014.03.014.
  • Medrano, M., M. O. Yilmaz, M. Nogués, I. Martorell, J. Roca, and L. F. Cabeza. 2009. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied Energy 86 (10):2047–55. doi:10.1016/j.apenergy.2009.01.014.
  • Pahamli, Y., M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury. 2016. Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renewable Energy 97:344–57. doi:10.1016/j.renene.2016.05.090.
  • Seddegh, S., X. Wang, and A. D. Henderson. 2016. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Applied Thermal Engineering 93:348–58. doi:10.1016/j.applthermaleng.2015.09.107.
  • Siegel, R. 1997. Solidification of low conductivity material containing dispersed high conductivity particles. International Journal of Heat and Mass Transfer 20 (10):1087–89. doi:10.1016/0017-9310(77)90195-8.
  • Sparrow, E. M., E. D. Larsen, and J. W. Ramsey. 1984. Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer. International Journal of Heat and Mass Transfer 24 (2):273–84. doi:10.1016/0017-9310(81)90035-1.
  • Sukborom, P., and A. Chinsuwan. 2017. Effects of feed water temperature, pool temperature, and pool side heat transfer coefficient on freezing time of the conventional block ice production. Energy Procedia 138:63–68. doi:10.1016/j.egypro.2017.10.052.
  • Velraj, R., R. V. Seeniraj, B. Hafner, C. Faber, and K. Schwarzer. 1997. Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Solar Energy 60 (5):281–90. doi:10.1016/S0038-092X(96)00167-3.
  • Wołoszyn, J., K. Szopa, and G. Czerwiński. 2021. Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system. Applied Thermal Engineering 196:117332. doi:10.1016/j.applthermaleng.2021.117332.
  • Xie, J., and C. Yuan. 2014. Numerical study of thin layer ring on improving the ice formation of building thermal storage system. Applied Thermal Engineering 69 (1–2):46–54. doi:10.1016/j.applthermaleng.2014.04.053.
  • Xie, J., and C. Yuan. 2016. Parametric study of ice thermal storage system with thin layer ring by Taguchi method. Applied Thermal Engineering 98:246–55. doi:10.1016/j.applthermaleng.2015.12.038.
  • Yang, T., Q. Sun, and R. Wennersten. 2018. The impact of refrigerant inlet temperature on the ice storage process in an ice-on-coil storage plate. Energy Procedia 145:82–87. doi:10.1016/j.egypro.2018.04.014.
  • Ye, W. -B., D. -S.N. Zhu, and N. Wang. 2011. Wang, numerical simulation on phase-change thermal storage/release in a plate-fin unit. Applied Thermal Engineering 31 (17–18):3871–84. doi:10.1016/j.applthermaleng.2011.07.035.
  • Yisunzam, P., and A. Chinsuwan. 2023. Effect of triangular cross-sectional transverse wedge on the performance of an inline tube bundle heat exchanger. Experimental Heat Transfer 1–15. doi:10.1080/08916152.2023.2171161.
  • Zhang, Y., and A. Faghri. 1996. Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. International Journal of Heat and Mass Transfer 39 (15):3165–73. doi:10.1016/0017-9310(95)00402-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.