159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantitative analysis and co-optimization of cathode catalyst layer compositions and operating conditions on cost and performance of PEM fuel cell

, , &
Pages 651-665 | Received 05 Dec 2022, Accepted 14 Apr 2023, Published online: 01 May 2023

References

  • Alink, R., R. Singh, P. Schneider, K. Christmann, J. Schall, R. Keding, and N. Zamel. 2020. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers. Molecules 25 (7):1523. doi:10.3390/molecules25071523.
  • Ang, S. M. C., D. J. L. Brett, and E. S. Fraga. 2010. A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system. Journal of Power Sources 195 (9):2754–63. doi:10.1016/j.jpowsour.2009.10.095.
  • Badduri S R, G N Srinivasulu , G N S N RaoG et al. 2019. Experimental analysis of PEM fuel cell performance using lung channel design bipolar plate. International Journal of Green Energy 16 (15):1591–601. doi:10.1080/15435075.2019.1677238.
  • Burheim O S, J G Pharoah , H Lampert, P J.S Vie et al. 2011. Through-plane thermal conductivity of PEMFC porous transport layers. Journal of Fuel Cell Science and Technology 8 (2):1–11. doi:10.1115/1.4002403.
  • Burheim, O., P. J. S. Vie, J. G. Pharoah, and S. Kjelstrup. 2010. Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. Journal of Power Sources 195 (1):249–56. doi:10.1016/j.jpowsour.2009.06.077.
  • Cai T, D. Zhao , S. H. Chan and M. Shahsavari Shahsavari. 2022. Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures. Energy 260:125090. doi:10.1016/j.energy.2022.125090.
  • Chen, H., B Liu, T Zhang and Pei, P. 2019. Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions. Applied Energy 255:113849. doi:10.1016/j.apenergy.2019.113849.
  • Chen, H., X. Zhao, B. Qu, T. Zhang, P. Pei, and C. Li. 2018. An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell. Applied Energy 232:26–35. doi:10.1016/j.apenergy.2018.09.031.
  • Chen, Q., Z Niu., H Li, K Jiao and Wang, Y. 2021. Recent progress of gas diffusion layer in proton exchange membrane fuel cell: Two-phase flow and material properties. International Journal of Hydrogen Energy 46 (12):8640–71. doi:10.1016/j.ijhydene.2020.12.076.
  • Ding, R., S. Zhang, Y. Chen, Rui, Z., Hua, K., Wu, Y., Li, X., Duan, X., Wang, X., Li, J. et al. 2022. Application of Machine Learning in Optimizing Proton Exchange Membrane Fuel Cells: A Review. Energy and AI 9:100170. doi:10.1016/j.egyai.2022.100170.
  • Ebrahimi, S., B. Ghorbani, and K. Vijayaraghavan. 2017. Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm. Renewable Energy 113:846–54. doi:10.1016/j.renene.2017.06.067.
  • Ebrahimi, S., R. Roshandel, and K. Vijayaraghavan. 2016. Power density optimization of PEMFC cathode with non-uniform catalyst layer by Simplex method and numerical simulation. International Journal of Hydrogen Energy 41 (47):22260–73. doi:10.1016/j.ijhydene.2016.07.247.
  • Fan R, G Chang, Y Xu et al. 2023. Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC. Energy 262:125580. doi:10.1016/j.energy.2022.125580.
  • Ghasabehi, M., M. Shams, and H. Kanani. 2021. Multi-objective optimization of operating conditions of an enhanced parallel flow field proton exchange membrane fuel cell. Energy Conversion and Management 230:113798. doi:10.1016/j.enconman.2020.113798.
  • Huang, W., Q. Jian, S. Feng, and Z. Huang. 2022. A hybrid optimization strategy of electrical efficiency about cooling PEMFC combined with ultra-thin vapor chambers. Energy Conversion and Management 254:115301. doi:10.1016/j.enconman.2022.115301.
  • Huo S, Li L, Shi W et al. 2021. Characteristics of Cold Start Behavior of PEM Fuel Cell with Metal Foam as Cathode Flow Field under Subfreezing Temperature. International Journal of Green Energy 18 (11):1129–46. doi:10.1080/15435075.2021.1891911.
  • Iskandarani, B., R. Mojarrad, N. Yürüm A, S. Alkan Gürsel, and B. Yarar Kaplan. 2022. Electrospun Nanofiber Electrodes for Boosted Performance and Durability at Lower Humidity Operation of PEM Fuel Cells. Energy & Fuels 36 (16):9282–94. doi:10.1021/acs.energyfuels.2c01595.
  • Jiang, Y., Z. Yang, K. JIAO, and Q. Du. 2018. Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model. Energy Conversion and Management 164:639–54. doi:10.1016/j.enconman.2018.03.002.
  • Jiao, K., J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, et al. 2021. Designing the next generation of proton-exchange membrane fuel cells. Nature. 595(7867):361–69. doi:10.1038/s41586-021-03482-7.
  • Jin L, X J Wang, J W Zhu et al. 2021. Sensitivity analysis of proton exchange membrane fuel cell performance to operating parameters and its applicability assessment under different conditions. Energy Conversion and Management 228:113727. doi:10.1016/j.enconman.2020.113727.
  • Kazeminasab, B., S. Rowshanzamir, and H. Ghadamian. 2015. Multi-objective multivariable optimization of agglomerated cathode catalyst layer of a proton exchange membrane fuel cell. Bulgarian Chemical Communications 47:38–48.
  • Lin C, X Yan, G Wei et al. 2019. Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method. Applied Energy 253:113496. doi:10.1016/j.apenergy.2019.113496.
  • Li, X., F. Tang, Q. Wang, Li, B., Dai, H., Chang, G., Zhang, C. and Ming, P. 2022. Simulation on cathode catalyst layer in proton exchange membrane fuel cell: Sensitivity of design parameters to cell performance and oxygen distribution. International Journal of Hydrogen Energy 47 (58):24452–63. doi:10.1016/j.ijhydene.2022.05.179.
  • Liu Z, X Zeng, Y Ge et al. 2017. Multi-objective optimization of operating conditions and channel structure for a proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer 111:289–98. doi:10.1016/j.ijheatmasstransfer.2017.03.120.
  • Li, S., J. Yuan, G. Xie, and B. Sundén. 2018. Effects of agglomerate model parameters on transport characterization and performance of PEM fuel cells. International Journal of Hydrogen Energy 43 (17):8451–63. doi:10.1016/j.ijhydene.2018.03.106.
  • Ma X, X Zhang, J Yang et al. 2021. Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells. Energy Conversion and Management 227:113579. doi:10.1016/j.enconman.2020.113579.
  • Mei, B., P. Barnoon, D. Toghraie, C. -H. Su, H. C. Nguyen, and A. Khan. 2022. Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels. Renewable and Sustainable Energy Reviews 157:112021. doi:10.1016/j.rser.2021.112021.
  • Moein-Jahromi, M., and Kermani, M.J. 2021. Three-dimensional multiphase simulation and multi-objective optimization of PEM fuel cells degradation under automotive cyclic loads. Energy Conversion and Management 231:113837. doi:10.1016/j.enconman.2021.113837.
  • Muzaffar, T., T. Kadyk, and M. Eikerling. 2018. Tipping water balance and the Pt loading effect in polymer electrolyte fuel cells: A model-based analysis. Sustainable Energy & Fuels 2 (6):1189–96. doi:10.1039/c8se00026c.
  • Nanadegani F S, E N Lay, A Iranzo et al. 2020. On neural network modeling to maximize the power output of PEMFCs. Electrochimica acta 348:136345. doi:10.1016/j.electacta.2020.136345.
  • Ogungbemi, E., T. Wilberforce, O. Ijaodola, J. Thompson, and A. G. Olabi. 2020. Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells. International Journal of Energy Research 45 (2):1227–45. doi:10.1002/er.5810.
  • Xia L, S Tao , M Ni et al. 2021. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy 46 (55):27956–73. doi:10.1016/j.ijhydene.2021.06.032.
  • Okonkwo P C, O. Ige ,E M Barhoumi et al. 2021. Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy 46 (29):15850–65. doi:10.1016/j.ijhydene.2021.02.078.
  • Pasaogullari, U., and Wang, C.Y. 2005. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society 152 (2):A380–90. doi:10.1149/1.1850339.
  • Prokop, M., M. Drakselova, and K. Bouzek. 2020. Review of the experimental study and prediction of Pt-based catalyst degradation during PEM fuel cell operation. Current Opinion in Electrochemistry 20:20–27. doi:10.1016/j.coelec.2020.01.016.
  • Rivarolo, M., D. Rattazzi, T. Lamberti, and L. Magistri. 2020. Clean energy production by PEM fuel cells on tourist ships: A time-dependent analysis. International Journal of Hydrogen Energy 45 (47):25747–57. doi:10.1016/j.ijhydene.2019.12.086.
  • Secanell, M., K. Karan, A. Suleman, and N. Djilali. 2007. Multi-variable optimization of PEMFC cathodes using an agglomerate model. Electrochimica acta 52 (22):6318–37. doi:10.1016/j.electacta.2007.04.028.
  • Shahgaldi, S., A. Ozden, X. LI, and F. Hamdullahpur. 2018. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells. Energy Conversion and Management 171:1476–86. doi:10.1016/j.enconman.2018.06.078.
  • Song, Y., C. Zhang, L. C. Y, M. Han, R. -Y. Yong, D. Sun, and J. Chen. 2019. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. International Journal of Hydrogen Energy 45 (54):29832–47. doi:10.1016/j.ijhydene.2019.07.231.
  • Srinivasarao, M., D. Bhattacharyya, R. Rengaswamy, and Narasimhan, S. 2011. Multivariable optimization studies of cathode catalyst layer of a polymer electrolyte membrane fuel cell. Chemical Engineering Research & Design 89 (1):10–22. doi:10.1016/j.cherd.2010.04.020.
  • Stariha, S., K. Artyushkova, M. J. Workman, A. Serov, S. Mckinney, B. Halevi, and P. Atanassov. 2016. PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. Journal of Power Sources 326:43–49. doi:10.1016/j.jpowsour.2016.06.098.
  • Su Y,C Yin, S Huaet al. 2022. Study of cell voltage uniformity of proton exchange membrane fuel cell stack with an optimized artificial neural network model. International Journal of Hydrogen Energy 47 (67):29037–52. doi:10.1016/j.ijhydene.2022.06.240.
  • Vetter, R., and Schumacher, J.O. 2019. Free open reference implementation of a two-phase PEM fuel cell model. Computer Physics Communications 234:223–34. doi:10.1016/j.cpc.2018.07.023.
  • Wang, Y., B Seo, B Wang N. Zamel, K. Jiao, and X. C. Adroher. 2020. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and AI 1:100014. doi:10.1016/j.egyai.2020.100014.
  • Wang, B., B Xie J. Xuan, and K. Jiao. 2020. AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Conversion and Management 205:112460. doi:10.1016/j.enconman.2019.112460.
  • Wang, Y., D.F.R. Diaz, K.S Chen, Z. Wang, and X. C. Adroher. 2019. Materials, technological status, and fundamentals of PEM fuel cells – a review. Materials Today 32:178–203. doi:10.1016/j.mattod.2019.06.005.
  • Wang, B., R Lin, D Liu, J Xu and Feng, B. 2019. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. International Journal of Hydrogen Energy 44 (26):13737–43. doi:10.1016/j.ijhydene.2019.03.139.
  • Wang, Q., F. Tang, B. Li, H. Dai, J. P. Zheng, C. Zhang, and P. Ming. 2021. Numerical analysis of static and dynamic heat transfer behaviors inside proton exchange membrane fuel cell. Journal of Power Sources 488:229419. doi:10.1016/j.jpowsour.2020.229419.
  • Wang, Y., T Liu, H Sun He, Y. Fan, and S. Wang. 2020. Investigation of dry ionomer volume fraction in cathode catalyst layer under different relative humilities and nonuniform ionomer-gradient distributions for PEM fuel cells. Electrochimica acta 353:136491. doi:10.1016/j.electacta.2020.136491.
  • Wang, B., K. Wu, Z. Yang, and K. Jiao. 2018. A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation. Energy Conversion and Management 171:1463–75. doi:10.1016/j.enconman.2018.06.091.
  • Wishart, J., Z. Dong, and M. Secanell. 2006. Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model. Journal of Power Sources 161 (2):1041–55. doi:10.1016/j.jpowsour.2006.05.056.
  • Xia L, S Tao , M Ni et al., and C. Cheng. 2022. Reconstruction and optimization of catalyst layer of high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy 47 (84):35778–89. doi:10.1016/j.ijhydene.2022.08.136.
  • Xie, B., M. Ni, G. Zhang, X. Sheng, H. Tang, Y. Xu, G. Zhai, and K. Jiao. 2022. Validation methodology for PEM fuel cell three-dimensional simulation. International Journal of Heat and Mass Transfer 189:122705. doi:10.1016/j.ijheatmasstransfer.2022.122705.
  • Xing, L., X Liu., T Alaje R. Kumar, M. Mamlouk, and K. Scott. 2014. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy 73:618–34. doi:10.1016/j.energy.2014.06.065.
  • Xu, Y., G. Chang, R Fan and T. Cai. 2022. Multi‐objective optimization of temperature uniformity in cathode catalyst layer and performance of PEMFC with an ionomer‐gradient design. International Journal of Energy Research 46 (15):1–17. doi:10.1002/er.8527.
  • Xu, Y., G. Chang, R Fan and T. Cai. 2023. Effects of various operating conditions and optimal ionomer-gradient distribution on temperature-driven water transport in cathode catalyst layer of PEMFC. Chemical Engineering Journal 451:138924. doi:10.1016/j.cej.2022.138924.
  • Xu et al., Y., G. Chang, J. Zhang, Y. Li, and S. Xu. 2021. Investigation of Inlet Gas Relative Humidity on Performance Characteristics of PEMFC Operating at Elevated Temperature. World Electric Vehicle Journal 12 (3):110. doi:10.3390/wevj12030110.
  • Yang, Y., X. Zhou, B. Li, and C. Zhang. 2021. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer. International Journal of Hydrogen Energy 46 (5):4259–82. doi:10.1016/j.ijhydene.2020.10.185.
  • Yao J, Wu Z, Wang H et al. 2022. Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance. Applied Energy 324:119667. doi:10.1016/j.apenergy.2022.119667.
  • Zhang G, B Xie, Z Bao et al., and K. Jiao. 2018. Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. International Journal of Energy Research 42 (15):4697–709. doi:10.1002/er.4215.
  • Zhang, G., and K. Jiao. 2018. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Conversion and Management 176:409–21. doi:10.1016/j.enconman.2018.09.031.
  • Zhang, Y., A. Smirnova, A. Verma, and R. Pitchumani. 2015. Design of a proton exchange membrane (PEM) fuel cell with variable catalyst loading. Journal of Power Sources 291:46–57. doi:10.1016/j.jpowsour.2015.05.002.
  • Zhang, T., P. Wang, H. Chen, and P. Pei. 2018. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Applied Energy 223:249–62. doi:10.1016/j.apenergy.2018.04.049.
  • Zhang, J., B. Wang, J Jin S. Yang, and G. Li. 2022. A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism. Renewable and Sustainable Energy Reviews 156:111998. doi:10.1016/j.rser.2021.111998.
  • Zhang, G., J. Wu, Y. Wang, Y. Yin, and K. Jiao. 2020. Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model. International Journal of Heat and Mass Transfer 150:119294. doi:10.1016/j.ijheatmasstransfer.2019.119294.
  • Zhao, J., S Cai X. Huang, X. Luo, and Z. Tu. 2021. 4E analysis and multiobjective optimization of a PEMFC-based CCHP system with dehumidification. Energy Conversion and Management 248:114789. doi:10.1016/j.enconman.2021.114789.
  • Zhao Y, Y Liu, G Liu et al. 2021. Air and hydrogen supply systems and equipment for PEM fuel cells: A review. International Journal of Green Energy 19 (4):331–48. doi:10.1080/15435075.2021.1946812.
  • Zhou, J., A. Putz, and M. Secanell. 2017. A Mixed Wettability Pore Size Distribution Based Mathematical Model for Analyzing Two-Phase Flow in Porous Electrodes. Journal of the Electrochemical Society 164 (6):F530–39. doi:10.1149/2.0381706jes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.